异步电机基本工作原理

2023-05-17

第一篇:异步电机基本工作原理

最简单的三相异步调速电机马达工作原理

三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场.其转速n1的大小由调速电机马达极数2p和电源频率f而定,即n1=120f/2p.

这种旋转磁场肉眼看不到,如果在定子铁芯内放一个空易拉罐,罐的两端用尖端支上,则易拉罐就会旋转.为了说明调速电机马达的工作原理,我们模拟两个磁极(N、S极)在旋转、转子用铜条做成笼型的.

调速电机马达定子两极按逆时针方向旋转,转子静止,可以看成定子精子(n1=0),转子按顺时针方向旋转,由于转子铜条切割磁场,铜条内有感应电动势,由于铜条是短路的,所以有感应电流产生的,它的方向用右手定则可以判断,上边铜条电流方向进入纸内,下边铜条的电流方向从纸内出来.

调速电机马达转子铜条有电流,又处在磁场当中,导体要受到力的作用,此力方向可用左手定则判出.上下的力F构成力矩,转子会旋转起来.通过以上分析可以看出:

1、转子要转动必须有旋转磁场;

2、转子转动方向与旋转磁场方向相同;

3、转子转速n必须小于同步转速n1,否则导体不切割磁场,无感应电流产生,也就无转矩,调速电机马达要停下来,停下后,速度减慢,n

第二篇:永磁同步电机与异步电机的比较

随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电机与普通异步速电机相比,具有如下优势:

1、效率高

这里所说的效率高不仅仅指额定功率点的效率离于普通三相异步电机,而是指其在整个调速范围内的平均效率。永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。

2.启动转矩

永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起倍1.8倍上升到2.5倍,甚至更大。

3.对电网运行的影响

因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。

4、体积小,重量轻

由于使用了高性能的永磁材料提供磁场,使得永磁电机的气隙磁场较感应电机大先增强,永磁电机的体积和重最较感应电机可以大大的缩小。例如11kW的异步电机重最为220kg,而永磁电机仅为92kg,相当于异步电机重量的45.8%。

5、故障率更低、使用普遍

由于使用了高性能的稀土永磁材料提供磁场,因此故障率更低,使用更加普遍为目前应用的主流电梯驱动电机,异步电机目前在客用电梯应用市场上已经完全淘汰,部分低端大载量货用电梯在使用!

基于以上对比优势,目前,永磁同步电机它比普通三相异步电机更高效,更节能!

第三篇:直流电机与三相异步电机相比的缺点(整理)

与三相异步电机相比,直流电机主要存在如下问题:

一.由于直流电机存在换向器,使得高速、高压直流电机的制造变得极为困

难。这限制了直流电机的功率范围。

二.同时由于直流电机的转子是结构比较复杂,使得故障概率升高,同时惯

量相对较大。

三.长期使用需要定时更换炭刷,使维护工作量加大。

四.直流电机的换向器与电枢绕组的焊接点成为“事故高发点”。对环境恶

劣的场合常常需要使用钢质换向器及氩弧焊工艺,会大大增加成本。

五.当前的Z4系列直流电机体积大大缩小,对强迫通风的依赖性更强。在

没有强迫通风的情况下,即使空载也可能烧电机(因为励磁绕组可能永久通电)。

六.Z4系列直流电机的风机将冷空气直接吹进电机内部(普通交流异步电

机一般是吹散热筋),所以直流电机的防护等级一般比较低。大多直流电机的风机会外加无纺布的过滤网。过滤网视环境情况需要定期清洗,也增加了维护的工作量。

七.直流电机的出风口百叶窗在喷漆时是用纸糊上的,以免油漆进入电机内

部。需要用户在现场开机前将其撕调。常常有用户遗忘此步骤,造成电机运行不久即烧毁。

第四篇:三相异步电机转速与制动研究毕业论文

网络高等教育

目:关于三相异步电机转速与制动的研究

学习中心: 层 次: 高中起点专科

专 业: 电气工程及其自动化

年 级: 2009年 春 季

学 号: xxxxxx xxxxxxxxx 学 生: xxx xxxxx 指导教师: xxxxxxxxxxxx 完成日期: xxxxxxxxxxxxxxxxxxxxx

关于三相异步电机转速与制动的研究

内容摘要

三相异步电动机是生产中不可或缺的机械,在工业生产中,有许多工艺要求拖动系统能快速起动、制动和频繁正反转,此类系统要求电机四象限运行。本文首先对三相异步电机的变频调速原理进行了分析,然后对三相异步电机的制动方式进行了简要介绍,在此基础上,对电压型变频器再生能量产生机理进行了较深入的理论探讨,揭示了回馈状态下各物理量之间的关系,并设计了一种能量回馈控制系统,该系统使得变频器可以实现四象限运行,节能效果明显。

关键词:异步电动机;变频调速;制动;

I

关于三相异步电机转速与制动的研究

目 录

内容摘要 ........................................................................................................................... I 引

言 .............................................................................................................................. 1 1 异步电动机调速的原理及方法 ................................................................................ 2

1.1 工作原理 .......................................................................................................... 2 1.2 变频调速控制方式 .......................................................................................... 2

1.2.1 电源频率低于工频范围调节 ................................................................ 2 1.2.2 电源频率高于工频范围调节 ................................................................ 3 1.2.3 转差频率控制 ........................................................................................ 4

2 制动 ............................................................................................................................ 4

2.1 电机制动方式简介 .......................................................................................... 4

2.1.1 反接制动 ................................................................................................ 4 2.1.2 能耗制动 ................................................................................................ 4 2.1.3 电磁制动 ................................................................................................ 5 2.1.4 串接制动 ................................................................................................ 6 2.1.5 发电制动 ................................................................................................ 6 2.2 变频调速系统中电机的制动 .......................................................................... 6

2.2.1 变频调速异步电机再生制动状态分析 ................................................ 7 2.2.2 变频调速器再生能量的产生机理 ........................................................ 7 2.2.3 再生能量回馈状态下的理论计算 ........................................................ 8 2.2.3.1 惯性体的运动能量计算 ..................................................................... 8 2.2.3.2 变频器驱动电机再生制动时的能量计算 ......................................... 8 2.2.3.3 制动转矩计算 ................................................................................... 8 2.2.3.4 变频器参数设定与制动能力分析 ..................................................... 9 2.2.3.5 回馈能量计算 ................................................................................... 10 2.2.4 再生能量回馈系统设计 ...................................................................... 10 2.2.5 实验结果 .............................................................................................. 12

3 小结 .......................................................................................................................... 12 参考文献 ........................................................................................................................ 14

II

关于三相异步电机转速与制动的研究

实际的生产过程离不开电力传动。生产机械通过电动机的拖动来进行预定的生产方式。直流电动机可方便地进行调速, 但直流电动机体积大、造价高, 并且无节能效果。而交流电动机体积小、价格低廉、运行性能优良、重量轻, 是生产过程中广泛使用的机械,因此交流电动机的调速具有重大的实用性。使用调速技术后, 生产机械的控制精度可大为提高,并能够较大幅度地提高劳动生产率和产品质量, 而且可对诸多生产过程实施自动控制。通过大量的理论研究和实验, 人们逐渐认识到:对交流电动机进行调速控制, 不仅能使电力拖动系统具有非常优秀的控制性能, 而且在许多场合中, 还具有非常显著的节能效果。

关于三相异步电机转速与制动的研究

1 异步电动机调速的原理及方法

三相交流电动机定子绕组中的三相交流电在定子隙圆周上产生一个旋转磁场, 这个旋转磁场的转速称同步转速, 记为n1 ,实际电动机转速n 要低于同步转速, 故一般称这样的三相交流电动机为三相异步电动机。

1.1 工作原理

异步电动机的同步转速遵从电机学基本关系

(1)

式中,f——电源交变频率,p——电机定子磁极对数 电机学中还常用转差率s参量,其定义为: 电机的实际转速

(3)

(2)

从式( 3) 可知, 异步电动机调速可以从改变电源平率、改变电机定子极对数、改变转差率等方面来进行调节。因此,电机的调速方法有很多,串级调速、变频调速、能耗转差调速等。随着电力电子技术、计算机控制、微电子等高技术的发展, 交流调速取代直流调速已成为发展趋势。电机的交流变频调速技术是现代工业节电和改善工艺流程以提高产品质量的一种主要手段。

变频调速是改变电动机定子电源的频率, 从而改变其同步转速的调速方法。交流变频调速具有系统体积小, 重量轻、控制精度高、保护功能完善、工作安全可靠、操作过程简单, 通用性强, 使传动控制系统具有优良的性能, 同时节能效果明显,产生的经济效益显著。尤其当与计算机通信相配合时, 使得变频控制更加安全可靠,易于操作( 由于计算机控制程序具有良好的人机交互功能) , 变频技术必将在工业生产发挥巨大的作用, 让工业自动化程度得到更大的提高。

1.2 变频调速控制方式

式( 3) 可知, 异步电动机变频调速的控制方式基本上有以下三种: 1.2.1 电源频率低于工频范围调节

电源的工频频率在我国为50Hz。电机定子绕组内的感应电动势为:

关于三相异步电机转速与制动的研究

(4)

式中f1——定子绕组中感应电动势的频率, 与电源频率f 相等, Hz; K1——电机定子绕组的绕组系数, 其值取决于绕组结构, K1<1; N1——电机定子绕组每相串联的线圈匝数; Ф——电机每极磁通; 定子电压U1 与定子绕组感应电动势E1 的关系为

(5) 式中Z1——定子绕组每组阻抗

I1——定子绕组相电流 若忽略定子压降I1Z1, 则 把该式整理成

(6)

(7) (8) (9) 电动机的电磁转矩M与( U1/f1) 2 成正比,若下调频率f1, 同时也下调U1, 使( U1/f1) 比值保持恒量, 则磁通Ф不变, 因此转矩也保持常值,此时电动机拖动负载的能力不发生改变, 这种控制方式称为恒磁通调压调频调速, 也叫恒转矩调速。

1.2.2 电源频率高于工频范围调节

由于使频率f1增加,U1/f1变小, 而U1不能高于额定电压, 在该控制方式中, 保持U1不变, 由于频率变高, 由式( 9) 知道, 定子磁通Ф变小, 电磁转矩M也变小, 但电源频率增加, 设电动机转动角速度w=2πn, 电机的功率是电磁转矩M与角速度ω的乘积:

P=M·ω (10) 调节过程中, 使频率f与转矩的变化成一定协调关系, 从而保持电机功率P 为恒量, 即功率不发生变化, 这种升频定压调速为恒功率调速。

关于三相异步电机转速与制动的研究

1.2.3 转差频率控制

三相异步电动机中,定子与转子之间的圆周空隙有一旋转磁场, 转速为n1, 电机转子实际转速为n, ( n1- n) 是转子与旋转磁场之间的相对切割速度。对频率、电压进行谐调控制, 使U1/f1 不变, 此时, 磁通Ф也不变, 在Ф不变的条件下,电磁转矩M与( n1- n)2 成正比。对频率f 进行调节, 即调节( n1- n) , 因此, 在实现转速调节时也实现了转矩的调节。

2 制动

电机的制动包括反接制动、能耗制动、电磁制动、串接制动、发电制动等。以下首先简要介绍电机制动方式,然后重点研究变频调速系统中电机的再生制动。

2.1 电机制动方式简介

2.1.1 反接制动

当异步电动机转子的转向与定子旋转磁场的转向相反时, 其运动状态称为反接制动。电路原理如图1。按下SB2 , KM1 自锁, 电机运转, 同时速度继电器KS 闭合, 为反接制动做准备。按下SB1 ,KM1 断电, KM2 自锁。此时定子旋转磁场与转子转向相反, 进入制动状态, 当转速低于某一值,KS 断开, 反接制动结束。

图1 反接制动原理

该方式制动转矩大, 制动迅速, 控制设备简单, 但制动冲击较大, 对传动机构有害, 容易使电机反转, 而且制动时电机从电源吸收并传递到转子的电磁功率以及从转轴上吸收的机械功率全部转化为热能, 对电机不利, 不适合制动频繁的场合。 2.1.2 能耗制动

如图2所示, 当定子绕组脱离交流电源时, 立即将其绕组切入直流电流, 使

关于三相异步电机转速与制动的研究

定子产生静止磁场。控制电路与反接制动一样, 按下SB2 , 电机起动,按下SB1 , 电机制动。

图2 能耗制动原理

该方法可以通过改变直流电流的大小, 调节制动转矩的大小。它制动准确、平稳、能量消耗较小, 但是控制设备相对复杂, 故适合于要求制动平稳、准确和起动频繁并容量较大的电机。 2.1.3 电磁制动

如图3 所示, 在转子上装上制动部件, 转子制动部件极靴上固定永磁体, 机座上安装定子制动部件, 其上放置制动绕组, 并将制动绕组短路。当转子部件运转时, 将在定子制动部件中产生旋转磁场, 类似发电机, 该磁场是阻碍转子运动的, 若电机失电, 将会迅速停机。

图3 电磁制动结构

此结构机械上较为复杂, 但是无外围控制电路, 属于非机械接触的软制动, 冲击较小, 电气故障很低, 免维护。但因为制动转矩较小, 实用于转动惯量较小的小功率电机。

关于三相异步电机转速与制动的研究

2.1.4 串接制动

随着大功率电子元件的成熟,诞生了此种制动方式。电路如图4。将电机定子绕组末串联一全波整流电路VC,把整流后的电源送到与电机转子有机械机构联系的电磁铁YA上,通电时,电磁铁YA吸合,机械机构释放,电机运转,失电时,机械机构同步复原,迅速刹车。

该结构制动反应迅速、控制精度高、能耗小、冲击较小、无外围控制设备、制动简单、运行可靠, 同时可以弥补普通异步电动机起动电流大的缺点, 起到分压、降压起动的良好效果,是一种新型制动方式,几乎适合于所有的异步电机。

图4 串接制动原理

2.1.5 发电制动

该制动方式适合于变极、变频调速系统。适用于当转子转速超过同步转速的时候(即电机由高速到低速运行过程中)。当电机减速、制动或者带位能性负载重物下放时,电机处于再生发电状态,如果处理不当,将在直流侧出现过高的泵升电压,限制了通用变频器的应用范围。比较理想的方式是通过有源逆变装置将再生能量回馈到交流电网,在能源资源日趋紧张的今天,这项研究具有十分重要的现实意义。下文将进行详细介绍。

2.2 变频调速系统中电机的制动

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速也随之下降,而由于机械惯性的原因, 电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。下文在分析变频调速系统中的再生能量产生机理,揭示再生制动下各物理量之间的关系的基础上,设计了一种新型能量回馈控制系统。

关于三相异步电机转速与制动的研究

2.2.1 变频调速异步电机再生制动状态分析

当电机工作于再生发电状态时,电机内部将发生以下变化过程:变频器拖动电机降速,电机转子的旋转速度超过给定频率下的同步转速,也即超过电机内部同步旋转磁场的转速。造成转子切割磁力线的方向反向,转子导体上感应电势以及感应电流的方向反向。由于转子电流中的励磁分量不会发生变化(电机不可能使励磁电流反向,因为它需要从变频器侧吸收励磁电流以建立电机内部磁场,维持电机的运转) ,所变化的只是转子电流中的转矩分量,而转子电流转矩分量的变化又引起了定子电流转矩分量的变化。其结果是:定子电流的合成量(即平时所说的定子电流)和电机的转矩反向,从坐标上看,即电机的机械特性曲线从第一象限运动到第二象限。

2.2.2 变频调速器再生能量的产生机理

图5所示为变频器拖动电机运行时泵升电路的等值电路。为说明泵升电压产生机理, 假定电容电压Uc、绕组反电动势E、电阻r、电感L为常数。

可得回路方程。电动状态时:

(11)

再生发电状态时:

(12)

图5 泵升电路等值电路图

电动状态时E和I反向,回路电压为Uc-E,若ΔI保持不变,泵升时间Δt随E的升高而增大;再生发电状态时E和I同向,回路电压为Uc + E,在ΔI相等的情况下,泵升时间Δt随E的升高而减少。从能量关系看,电动状态时Uc 和E同时吸收电感放出的电能;而再生发电状态时只有Uc 吸收能量,它不仅吸收电感放出的电能,而且连制动时产生的电能也一并吸收了。如果没有吸收再生能量的环节,将导致电容

关于三相异步电机转速与制动的研究

上电压升高,升高的那一部分电压就称为泵升电压。 2.2.3 再生能量回馈状态下的理论计算 2.2.3.1 惯性体的运动能量计算

设n为旋转体的转速( r/min) , J和GD为旋转体的转动惯量( kg·m2 ) ,且GD=4J,则旋转体具有的运动能量为

(13)

当速度从n1 减速到n2 ( r/min)时释放出的能量为

(14)

2.2.3.2 变频器驱动电机再生制动时的能量计算

再生能量是由电机机械系统的动能转化而来,可表达为

(15)

式中:能;

为机械系统的动能;

为储存在电机电感中的电磁

为机械阻力所消耗的等效电能, Mf ( t)为机械阻力矩函数,ω( t)为电机角速度函数;W0 为其他损耗。为简化计算,假定电感中所存储的能量与机械阻力能和各种损耗相抵消, 即机械系统的动能都转化为再生能量回馈变频器直流侧,则有: (16)

所以电机再生发电功率(W) :

(17)

2.2.3.3 制动转矩计算

电动机要加速时,就要增大其运动能量;相反,要减速时,必须释放其运动能量。其加速和减速所需要的转矩表达为

(18)

关于三相异步电机转速与制动的研究

2.2.3.4 变频器参数设定与制动能力分析

异步电动机转速可以表示为

(19)

其中f1 为电动机定子频率, s为转差率,p为电机极对数。在变频调速系统中, s和p可以看作常数。将式(19)两边分别取导数

(20)

由式(17) 、(18)和(20) ,整理得

(21)

(22)

(23)

其中τ为实际生产工艺要求的减速时间,Δf1为变频器频率输出的变化量。式(21)~(23)反映了电动机再生制动时发电功率、制动转矩与变频器基本参数相互之间的定量关系。由上述各式可得以下结论: 1) 电机制动时回馈能量的大小与系统的转动惯量、转速、机械阻力、电机绕组电感等因素有关; 2) 假定电感中所存储的能量可与机械阻力能及各种损耗相抵消,则电机的发电功率大小由电机的转动惯量GD 、电机转速n、减速时间τ决定; 3) 在t=0时刻,电机刚开始回馈时若转速为n1 ,变频器减速时间已设定的情况下, 设 (k>0)。则最大发电功率为

(24)

式中n0为给定电源频率下的同步转速;负号表示能量由电机侧流向变频器直流侧; 4) 若变频器的频率变化及减速时间参数确定,可以求出确定的制动转矩。当要求的减速时间越短电动机的发电功率越大,提供的制动转矩也越大。同时电机再生制动时最大发电功率与制动转矩的关系,可由式(23)得到:

关于三相异步电机转速与制动的研究

(25)

显然, Pmax与制动转矩T、电机转速n1成正比; 5) 制动转矩的大小与系统的转动惯量成正比,与减速时间τ成反比。 2.2.3.5 回馈能量计算

设有源逆变停止时直流侧电压为U1 ,正常工作时为Ue,则回馈过程电网需吸收的能量为

(26)

其中C为变频器及有源逆变器中间环节电解电容的电容量。在能量回馈过程中由于直流侧电压的平均值Ua为一定值, 故回馈功率的大小仅由回馈电流决定。设回馈电流时直流侧的电流平均值为IL ,电网相电压有效值为U2 , 则能量回馈平均功率Pfa约为

(27)

为保证电机的制动效果,电网回馈功率Pf 应不小于电动机再生发电过程中可能出现的最大发电功率Pmax , 否则直流侧电压将持续升高;同时Pfa还应不大于变频调速系统的额定功率Pe。由能量守恒定律可得Pfaτ=Wf ,即

(28)

该式即为有源逆变时电网侧回馈能量的表达式。由式(28)可以得到下述结论: 1)对于一个确定的系统(转动惯量一定) , 若电机转速n、电网电压U2 和逆变停止电压U1一定,则回馈电流IL 与制动时间τ成反比; 2) 在电网电压U

2、直流侧电压U1和回馈电流IL不变的情况下,转动惯量GD 越大,则制动所需时间τ越长;转动惯量GD越小,则所需制动时间τ越短。 2.2.4 再生能量回馈系统设计

如前所述,再生能量及时高效的回馈电网,使通用变频器可四象限运行, 并实现节能降耗。本文在对变频调速系统电机再生制动分析理论指导下, 设计了一种新型的通用变频器能量回馈控制系统, 整个系统结构框图如图6。主电路主要由三相IPM逆变桥和相关外围电路组成。逆变桥的输出端通过三个扼流电抗器L

1、L

2、

关于三相异步电机转速与制动的研究

L3 与变频器输入端子R、S、T相连,输入端则通过两个隔离二极管D

1、D2 接变频器的直流侧P、N端,以保障能量在变频器→有源逆变桥→电网方向上的单向流动。C

3、C4 为滤波电解电容, R

3、R4为电容均压电阻, R5为电容充电限流电阻, J2 为用于切除限流电阻的继电器。霍尔电流传感器H负责检测回馈电流,为系统实现回馈电流控制提供准确可靠的反馈信号。限流电抗器L

1、L

2、L3 的作用是平衡压差、限流以及滤波。系统工作过程是:当电机电动运行时,逆变器开关管VT1 ~VT6全被封锁,处于关断状态;当电动机处于再生发电状态时,能量由电机侧回馈直流侧,导致直流母线电压升高。当直流母线电压超过电网线电压峰值时, 整流桥由于承受反压而关断;当直流母线电压继续升高并超过启动逆变器工作电压VDLH时, 逆变器开始工作,将能量从直流侧回馈电网。当直流母线电压下降到关闭逆变器工作电压VDLL时,关闭逆变器。一个完善的能量回馈控制系统应满足相位、电压、电流等三方面的控制条, 这要求回馈过程必须与电网相位保持同步关系;只有直流母线电压超过一定值时才启动有源逆变装置;系统应该能够控制回馈电流的大小,从而可以控制电机的制动转矩,实现精确制动。控制系统结构框图如图6,主要包含同步电路、电压检测控制电路、电流检测控制电路和故障检测、保护电路等部分,整个系统由微处理器进行监控。回馈电流的质量是整个系统的关键和难点,本文设计的系统采用SPWM ( Sinusoidal Pulse Width Modulation)控制方式,结合同步信号实现单位功率因数正弦波回馈。

图6 能量回馈控制系统结构框图

关于三相异步电机转速与制动的研究

2.2.5 实验结果

图7为该控制系统回馈电流的实验波形(测试仪器为FLUKE PM3380A示波器),实测功率因数绝对值≥0.98 (测试仪器为FLUKE- 41B多功能谐波分析仪)。实验表明系统馈送电流谐波小,功率因数高,不仅有效地限制了泵升电压,保证了变频驱动系统的安全正常运行,而且还能实现能量回收和精确制动,使通用变频器可广泛应用于需要四象限运行的场合。

图7 回馈电流的实验波形

3 小结

本文首先对三相异步电机的变频调速原理进行了分析,然后对三相异步电机的制动方式进行了简要介绍,在此基础上,对电压型变频器再生能量产生机理进行了较深入的理论探讨,揭示了回馈状态下各物理量之间的关系,并设计了一种能量回馈SPWM 控制系统,给出了实验结果。具体结论列举如下: 1) 电机制动时回馈能量与系统的转动惯量、转速、机械阻力、电机绕组电感、电机以及变频器回路的电阻等因素有关;

2) 电机的发电功率大小由电机的转动惯量、电机转速、减速时间决定;制动转矩的大小与系统的转动惯量成正比,与制动时间成反比;

3) 对于一个确定的系统(转动惯量一定) ,若电机转速、电网电压和逆变停止电压一定,则回馈电流与制动时间成反比;在电网电压、直流侧电压和回馈电流不变的情况下,转动惯量越大,则制动所需时间越长,否则反之。

本文设计的新型能量回馈SPWM控制系统既可实现单位功率因数、高质量的正弦波回馈电流,又能实现异步电动机的精确制动。与通用变频器配合使用拓宽了通

关于三相异步电机转速与制动的研究

用变频器的应用领域。值得指出的是,目前制作PWM整流器或四象限运行变频器在技术上没有问题,而且其拓扑电路也比通用变频器加回馈单元简单,但是由于前两者均属于专用逆变器,市场价格昂贵,在现阶段的竞争力还不如后者。特别是对于用回馈单元替代已有变频系统中的制动电阻的情形,后者的性价比优势更加突出,因此新型能量回馈装置应用前景广阔。另外,这种馈电技术不仅可用于变频驱动异步电机再生制动而且可广泛用于光伏逆变器并网等场合。

关于三相异步电机转速与制动的研究

参考文献

[1]陈世坤.电机设计[M].北京:机械工业出版社,1990. [2]陆宝琦.交流变频电机的绝缘[J].绝缘材料,2001. [3] 国内变频调速异步电动机基本情况调查资料,2002. [4] 满永奎,等编.通用变频器及其应用.北京:机械工业出版社,1998. [5] 陈伯时主编.电力拖动自动控制系统.北京:机械工业出版社,1992. [6] 王毓东.电机学[M].杭州: 浙江大学出版社, 2001. [7] 杨渝钦.控制电机[M].天津大学出版社(第2 版) ,2003 [8] RAJU N R. An SCR-based regenerative converter for VSI drives [C]. Power Electronics Specialist Conference, 2003. PESC 03.2003 IEEE 34th Annual, 2003: 1770-1774. [9] 陈国呈. 新型电力电子变换技术[M]. 北京:中国电力出版社, 2004. [10] 张承慧. 变频调速系统效率优化控制、理论与应用[D ]. 济南:山东大学, 2001. [11] SAHA S, DANDEKAR A V, SUNDERSINGH V P. A modified app roach of feeding regenerative energy to the mains [J]. IEEE Transactions on Industrial Electronics, 1996, 43 (4) : 510-514. [12] 张晓光,万淑云,王离九,等. 直流脉宽调速系统中回馈能量的研究及泵升电路的设计[J]. 电工技术学报, 1996, 11 (1):34-37

第五篇:PLC 在三相异步电机控制中的应用论文

河北化工医药职业技术学院毕业论文

第1章 绪论

三相异步电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。

在生产过程,科学研究和其他产业领域中,电气控制技术应用十分广泛。在机械设备的控制中,电气控制也比其他的控制方法使用的更为普遍。

本系统的控制是采用PLC的编程语言——梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。可编程控制器使一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计。它采用可编程序的存储器,用来在内部存储执行逻辑运算、顺序控制,定时、计数和算术等操作的指令,并采用数字式、模拟式的输入和输出,控制各种的机械或生产过程。

可编程序控制器(PLC, Programmable Logic Controller)是采用微电脑技术制造的自动控制设备。他以顺序控制为主,回路调节为辅,能完成逻辑判断、定时、记忆和算术运算等功能。

随着PLC技术的发展,其功能越来越多,集成度越来越高,网络功能越来越强,PLC与上位PC机联网形成的PLC及其网络技术广泛地应用到工业自动化控制之中,PLC集三电与一体,具有良好的控制精度和高可靠性,使得PLC成为现代工业自动化的支柱。PLC的生产厂家和型号、种类繁多,不同型号自成体系有不同的程序语言和使用方法,本文拟就用日本立石公司生产的OMRON C20p型PLC,设计几个PLC在相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点,可作为高校学生学习PLC的控制技术的参考,也可作为工业电机的自动控制电路。

PLC在三相异步电机控制中的应用

第2章 设备规范及简要特性

2.1 概况

三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机锅炉参数和主要技术数据 。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

随着PLC成本的降低和应用日益广泛,三相异步电动机的常规控制应用PLC技术越来越成为现实。三相异步电动机根据工作要求不同,主要进行降压启动、正反转、自动循环、制动、变速等不同控制,该设计要求把对电动机的上述控制采用PLC控制来实现,使系统的性能更完善,PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、设计施工周期短、调试修改方便、而且体积小、功耗低、使用维护方便。作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

2.2 PLC简述

2.2.1 PLC的基本概念

可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。PLC自1966年出现,美国,日本,德国的可编程控制器质量优良,功能强大。

2.2.2 PLC的基本结构

河北化工医药职业技术学院毕业论文

PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,基本构成为:

1. 电源

PLC的电源在整个系统中起着十分重要的作用。如果没有一个良好的、可靠的电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去

2. 中央处理单元(CPU) 中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。 3. 存储器

存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。 4. 输入输出接口电路

(1)现场输入接口电路由光耦合电路和微机的输入接口电路,作用是PLC与现场控制的接口界面的输入通道。

(2)现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用PLC通过现场输出接口电路向现场的执行部件输出相应的控制信号。

5. 功能模块

如计数、定位等功能模块

6. 通信模块 如以太网、RS48

5、Profibus-DP通讯模块等 2.2.3 PLC机型的选择 1. PLC的容量应为多大? 2. 选择什么公司的PLC及外设?

目前各个厂家生产的PLC其品种、规格及功能都各不相同。由于本设计的需要我选择了日本松下电工公司的FP系列PLC,即FP0,FP0是超小型PLC、之所以选择这款PLC,是因为其产品有以下三个特点:

(1)丰富的指令系统,有将近200条指令。 (2)有强大通信功能。

PLC在三相异步电机控制中的应用

(3)CPU处理速度快。

2.3 三相异步电机的结构简述

2.3.1 定子(静止部分) 1. 定子铁心

作用:电机磁路的一部分,并在其上放置定子绕组。

构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。

定子铁心槽型有以下几种:

半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。

开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。 2. 定子绕组

作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。 (2)相间绝缘:各相定子绕组间的绝缘。 (3)匝间绝缘:每相定子绕组各线匝间的绝缘。 电动机接线盒内的接线:

电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。

3. 机座

作用:固定定子铁心与前后端盖以支撑转子,并起防护、散热等作用。 构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。

2.3.2 转子(旋转部分) 1. 三相异步电动机的转子铁心:

河北化工医药职业技术学院毕业论文

作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

2. 三相异步电动机的转子绕组

作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。鼠笼转子分为:阻抗型转子、单鼠笼型转子、双鼠笼型转子、深槽式转子几种,起动转矩等特性各有不同。

绕线式转子: 绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

特点:结构较复杂,故绕线式电动机的应用不如鼠笼式电动机广泛。但通过集流环和电刷在转子绕组回路中串入附加电阻等元件,用以改善异步电动机的起、制动性能及调速性能,故在要求一定范围内进行平滑调速的设备,如吊车、电梯、空气压缩机等上面采用。

2.3.3三相异步电动机的其它附件 1. 端盖:支撑作用。

2. 轴承:连接转动部分与不动部分。 3. 轴承端盖:保护轴承。 4. 风扇:冷却电动机。

PLC在三相异步电机控制中的应用

第3章 PLC在电机控制中的应用

3.1 控制方面

1. 控制方案设计。根据电动机在实际工作时的常见控制要求,设计出2—3套控制方案。

2. 硬件设计。对控制系统所需标准件进行选型和非标件设计。 3. 控制程序设计。

(1)三相异步电机的正反转控制

要求当按下正转按钮,电机连续正转,此时反转按钮不起作用(互锁),按下停止 按钮电机断开电源,按下反转按钮电机连续反转,正转不起作用。图3.1所示为三相异步电机的正反转控制原理图及指令、梯形图。

图3.1 三相异步电机的正反转控制原理图及指令、梯形图

(2)三相异步电机Y—△启动

河北化工医药职业技术学院毕业论文

要求起动时电机接成Y型,经过一段时间自动转化为△形运行,要求Y形断开后△形才能启动,防止Y形未断△形启动造成电源短路。图3.2所示是三相异步电机Y—△启动控制原理图及指令、梯形图。

图3.2 三相异步电机Y—△启动控制原理图及指令、梯形图

(3)三相异步电机时间控制

要求第1台电动机M1启动5s后,第2台电动机M2自动启动,只有当第2台M2停止后,经过5s延时,M1自动停止。图3.3所示是三相异步电机时间控制原理图及指令、梯形图。

PLC在三相异步电机控制中的应用

图3.3 三相异步电机时间控制原理图及指令、梯形图

(4)程序的写入与运行

将PLC联上编程器并接通电源后,PLC电源指示灯亮,将编程器开关打到“PROGRAM”位置,这时PLC处于编程状态。编程器显示PASSWORD!这时依次按Clr键和Montr键,直至屏幕显示地址号0000,这时即可输入程序。

在输入程序前,需清除存储器中内容,依次按Clr、Play/Set, Not,Rec/Reset和Montr键,即将全部程序清除。按照以上3种控制的梯形图或程序指令将3种控制程序写入PLC,当上述3部分程序输入到PLC机中后,用上下方向键读出所写程序,如程序有错,可用插入指令和删除指令修改程序。

程序输入正确后,分别按图3.1连接PLC外部接线及主回路线路实现电机正反转控制,按图3.2连接线路实现电机Y—△启动,按图3.3连接线路实现电机的时间控制。 此 河北化工医药职业技术学院毕业论文

设计可以一次性把3种控制电路的序全部输入,同时控制3种电路,运行时,按下SBF,SBR电机正反转启动,按下SB1,SB2控制电机Y—△启动,按下SB3,SB4电机顺序启动,互不干扰,事半功倍,实现了一台PLC同时控制多种电路形式。

3.2 技术指标

1. 标准件的选型符合国标

(1)编程简单,可在现场修改和调试程序。 (2)维护方便,采用插入式模块结构。 (3)可靠性高于继电器控制系统。 (4)体积小于继电器控制柜。

(5)能与管理中心计算机系统进行通信。 (6)成本可与继电器控制系统相竞争。 (7)输入量是115V交流电压。

(8)输入量为115V交流电压,输出电流在2A以上,能直接驱动电磁阀。 (9)系统扩展时,原系统只需做很小的改动。 (10)用户程序存储器容量至少4KB。 2. 程序调试正确

设计工作完毕后,要进行样机或产品的电气控制柜安装施工,按照电气接线图完成电气控制柜的安装及外部接线。外部电气接线图所示,连接配电盘底板和控制面板的导线,采用蛇形塑料软管或包塑金属软管保护,控制柜与电源、电机间多用电缆线连接。

完成电气控制柜的安装及接线后,经检查无误且连接可靠,进行通电实验。首先在空载状态下(不接电动机等负荷),通过操作相应开关,给出开关信号,实验控制回路各电器动作的正确性及状态指示信号的显示。经过调试,各电器元件均按照原理要求动作准确无误后,方可进行负载实验。第二步的负载实验通过后,编写相应的报告、原理、使用操作说明文件。

PLC在三相异步电机控制中的应用

第4章 三相异步电动机的故障分析和处理

绕组是电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障。绕组故障一般分为绕组接地、短路、开路、接线错误。现在分别说明故障现象、产生的原因及检查方法。

1、绕组接地:指绕组与贴心或与机壳绝缘破坏而造成的接地。 故障现象

机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。 产生原因

绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰铁心;绕组端部碰端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。

检查方法

(1)观察法。通过目测绕组端部及线槽内绝缘物观察有无损伤和焦黑的痕迹,如有就是接地点。

(2)万用表检查法。用万用表低阻档检查,读数很小,则为接地。

(3)兆欧表法。根据不同的等级选用不同的兆欧表测量每组电阻的绝缘电阻,若读数为零,则表示该项绕组接地,但对电机绝缘受潮或因事故而击穿,需依据经验判定,一般说来指针在“0”处摇摆不定时,可认为其具有一定的电阻值。

(4)试灯法。如果试灯亮,说明绕组接地,若发现某处伴有火花或冒烟,则该处为绕组接地故障点。若灯微亮则绝缘有接地击穿。若灯不亮,但测试棒接地时也出现火花,说明绕组尚未击穿,只是严重受潮。也可用硬木在外壳的止口边缘轻敲,敲到某一处等一灭一亮时,说明电流时通时断,则该处就是接地点。

(5)电流穿烧法。用一台调压变压器,接上电源后,接地点很快发热,绝缘物冒烟处即为接地点。应特别注意小型电机不得超过额定电流的两倍,时间不超过半分钟;大电机为额定电流的20%-50%或逐步增大电流,到接地点刚冒烟时立即断电。

(6)分组淘汰法。对于接地点在铁芯心里面且烧灼比较厉害,烧损的铜线与铁芯熔在一起。采用的方法是把接地的一相绕组分成两半,依此类推,最后找出接地点。

处理方法

(1)绕组受潮引起接地的应先进行烘干,当冷却到60——70℃左右时,浇上绝缘漆后再烘干。

(2)绕组端部绝缘损坏时,在接地处重新进行绝缘处理,涂漆,再烘干。

河北化工医药职业技术学院毕业论文

(3)绕组接地点在槽内时,应重绕绕组或更换部分绕组元件。 最后应用不同的兆欧表进行测量,满足技术要求即可。

2、绕组短路

由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。

故障现象

离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。

产生原因

电动机长期过载,使绝缘老化失去绝缘作用;嵌线时造成绝缘损坏;绕组受潮使绝缘电阻下降造成绝缘击穿;端部和层间绝缘材料没垫好或整形时损坏;端部连接线绝缘损坏;过电压或遭雷击使绝缘击穿;转子与定子绕组端部相互摩擦造成绝缘损坏;金属异物落入电动机内部和油污过多。

检查方法

(1)外部观察法。观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。

(2)探温检查法。空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。

(3)通电实验法。用电流表测量,若某相电流过大,说明该相有短路处。 (4)电桥检查。测量个绕组直流电阻,一般相差不应超过5%以上,如超过,则电阻小的一相有短路故障。

(5)短路侦察器法。被测绕组有短路,则钢片就会产生振动。

(6)万用表或兆欧表法。测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。

(7)电压降法。把三绕组串联后通入低压安全交流电,测得读数小的一组有短路故障。

(8)电流法。电机空载运行,先测量三相电流,在调换两相测量并对比,若不随电源调换而改变,较大电流的一相绕组有短路。

3、绕组断路

由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组 11

PLC在三相异步电机控制中的应用

发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 故障现象

电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 产生原因

(1)在检修和维护保养时碰断或制造质量问题。

(2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。

(4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 检查方法

(1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。 (2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。

(4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。

(5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。

(6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障;

(7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

(8)断笼侦察器检查法。检查时,如果转子断笼,则毫伏表的读数应减小。

4、绕组接错

绕组接错造成不完整的旋转磁场,致使启动困难、三相电流不平衡、噪声大等症状,严重时若不及时处理会烧坏绕组。主要有下列几种情况:某极相中一只或几只线圈嵌反或头尾接错;极(相)组接反;某相绕组接反; 多路并联绕组支路接错;“△”、“Y”接法错误。

故障现象

电动机不能启动、空载电流过大或不平衡过大,温升太快或有剧烈振动并有很大的噪声、烧断保险丝等现象。

产生原因

河北化工医药职业技术学院毕业论文

误将“△”型接成“Y”型;维修保养时三相绕组有一相首尾接反;减压启动是抽头位置选择不合适或内部接线错误;新电机在下线时,绕组连接错误;旧电机出头判断不对。

检修方法

(1)滚珠法。 如滚珠沿定子内圆周表面旋转滚动,说明正确,否则绕组有接错现象。

(2)指南针法。如果绕组没有接错,则在一相绕组中,指南针经过相邻的极(相)组时,所指的极性应相反,在三相绕组中相邻的不同相的极(相)组也相反;如极性方向不变时,说明有一极(相)组反接;若指向不定,则相组内有反接的线圈。

(3)万用表电压法。按接线图,如果两次测量电压表均无指示,或一次有读数、一次没有读数,说明绕组有接反处。

(4)常见的还有干电池法、毫安表剩磁法、电动机转向法等。 处理方法

(1)一个线圈或线圈组接反,则空载电流有较大的不平衡,应进厂返修。 (2)引出线错误的应正确判断首尾后重新连接。

(3)减压启动接错的应对照接线图或原理图,认真校对重新接线。 (4)新电机下线或重接新绕组后接线错误的,应送厂返修。

(5)定子绕组一相接反时,接反的一相电流特别大,可根据这个特点查找故障并进行维修。

(6)把“Y”型接成“△”型或匝数不够,则空载电流大,应及时更正。

PLC在三相异步电机控制中的应用

第5章 PLC在三相异步电机控制调试方案

目的:通过调试,使三相异步电机的各项功能满足设计要求。 范围:PLC的写入与运行

1、方法:

(1)硬件调试: 接通电源,检查可编程序控制器能否正常工作,接头是否接触良好。

(2)软件调试: 按要求输入梯形图,检查后编译通过,在线工作后把程序写入可编程序控制器的程序存储区。

(3)运行调试 : 在硬件调试和软件调试正确的基础上,使PLC进入运行状态,观察运行情况,看是否能够实现正反转、快速、中速、慢速、单步、定步控制。

根据以上调试情况,此电机控制系统设计符合控制要求。

通过调试找出问题的所在,相应的修改程序。在编程过程中难免会有不足之处,因此通过调试,再修改程序可以更好实现相应的功能。

2、步骤:

(1) 接通电源,检查可编程序控制器能否正常工作,接头是否接触良好。 (2)按要求输入梯形图,检查后编译通过,在线工作后吧程序写入可编程序控制器的程序存储区。

(3) 在硬件调试和软件调试正确的基础上,使PLC进入运行状态,观察运行情况,看是否能够实现正反转、Y—△启动、时间控制。

河北化工医药职业技术学院毕业论文

结束语

经过老师耐心细致的指导,经过近一个月的努力,本次毕业设计课题PLC在三相异步电动机控制中的应用告一段落。

随着PLC成本的降低和应用日益广泛,三相异步电动机的常规控制应用PLC技术越来越成为现实。三相异步电动机根据工作要求不同,主要进行降压启动、正反转、自动循环、制动、变速等不同控制,该设计要求把对电动机的上述控制采用PLC控制来实现,使系统的性能更完善,PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、设计施工周期短、调试修改方便、而且体积小、功耗低、使用维护方便。

通过本课题,一方面我在查阅资料的基础上,了解PLC控制的一些基本技术,掌握其控制系统的分析方法与实现方法,能对PLC进行系统学习与掌握;另一方面,在设计步进电机控制系统的硬件电路,控制程序和相应的梯形图时,应充分运用说学知识,善于思考,琢磨,分析。

PLC在三相异步电机控制中的应用

致谢

弹指一挥间,大学三年已经接近了尾声。当自己怀着忐忑不安的心情完成这篇毕业论文的时候,自己也从当年一个懵懂孩子变成了一个成熟青年,回想自己的十几年的求学生涯,虽然只是一个专科毕业,但也实属不容易。

在本次论文设计过程中,老师对该论文从选题,构思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文设计。在学习中,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度以及侮人不倦的师者风范是我终生学习的楷模,老师们的高深精湛的造诣与严谨求实的治学精神,将永远激励着我。这三年中还得到众多老师的关心支持和帮助。在此,谨向老师们致以衷心的感谢和崇高的敬意!

最后,我要向百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位老师表示感谢。书到用时方恨少,在这篇论文的写作过程中,我深感自己的水平还非常的欠缺。生命不息,学习不止,人生就是一个不断学习和完善的过程,敢问路在何方?路在脚下!

河北化工医药职业技术学院毕业论文

参考文献

[1]凌云.PS7219显示驱动器及其在PLC中的应用.湖南冶金职业技术学院报.2003 [2]张桂香.电气控制与PLC应用.化学工业出版社.2003 [3]张桂苓.浅谈现代PLC的优势特点.电子技术.2003 [4]李丹、杨素英.可编程控制器通用数据采集方法的研究.大连理工学报.2001 [5]齐晓慧、东海瑞.自动控制原理虚拟实验研究.中国教育杂志.2006 [6]刘晓燕.自动控制原理课程教改探索.重庆职业技术学院学报.2006 [7]李朝、韦玮.第四代移动通信中的多天线技术.移动通信.2005 [8]肖杰、荆雷.智能天线在移动通信中的应用.邮电设计技术.2004 [9]宋继玉.可编程控制器原理与应用系统设计技术,北京:冶金工业出版社,1999 [10]宋伯生.可编程控制器配置、编程、联网.北京:中国劳动出版社,1998 [11]于雷声.电气控制与PLC应用.北京:机械工业出版社,1993 [12]王兆义.可编程控制器教程.北京:中国水利出版社,1993 [13]汪晓光.可编程控制器原理及应用.北京:机械工业出版社,1998

PLC在三相异步电机控制中的应用

目录

第1章 绪论 ............................................................... 1 第2章 设备规范及简要特性 ................................................. 2 2.1 概况 .............................................................. 2 2.2 PLC简述 ........................................................... 2 2.3三相异步电机的结构简述 ............................................. 4 第3章 PLC在电机控制中的应用 ............................................. 6 3.1 控制方面 .......................................................... 6 3.2 技术指标 .......................................................... 9 第4章 三相异步电动机的故障分析和处理 .................................... 10 第5章 PLC在三相异步电机控制调试方案 ................................... 14 结束语 ................................................................... 15 致谢 ..................................................................... 16 参考文献 ................................................................. 17

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:院办公室年终工作总结下一篇:硬笔书法培训心得体会