电压表设计论文范文

2022-05-13

今天小编给大家找来了《电压表设计论文范文(精选3篇)》相关资料,欢迎阅读!本文运用AT89S51和AD678进行A/D转换,根据数据采集的工作原理,设计实现数字电压表,最后完成单片机与PC的数据通信,传送所测量的电压值数字电压表的设计和开发,已经有多种类型和款式。传统的数字电压表各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步分析处理,传统数字电压表是无法完成的。

第一篇:电压表设计论文范文

简易数字电压表的设计

摘 要:设计采用计数器74LS160、74LS161、V-F转换器LM331、集成运算放大器、555定时器、石英晶体震荡器和共阳极数码管为主要硬件,分析了数字电压表的proteus、multisim软件仿真电路的设计,最后用PROTEL软件完成印刷电路板的设计制作。设计的数字电压表可以完成正弦波,三角波和方波幅度测试,电压峰峰值Vpp为500mV~10V,测量误差小于3%。

关键词:数字电压表 V-F转换 设计

1 方案选择

通常情况对于电压的数字测量,采用A/D转换器如(ADC0809)实现模拟量电压到数字量转换,控制核心ATC89C51等单片机对转换结果进行运算处理,最后驱动输出装置显示测量结果。此种方案的测量精度较高,但成本也较高,软件编程复杂,对于一些低测量精度精度要求场合并不适用。于此决定采用一种不需要使用A/D转换和单片机的低成本方案。将电压模拟量通过LM331(电压—频率转换芯片)线性转换为与之对应的频率量,并通过构建的计数显示电路显示测量结果。

2 电路设计——V-F(电压-频率)转换电路

此电路由LM331芯片、电阻电容等元器件构成。

LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D 转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331的动态范围宽, 可达 100dB;线性度好,最大非线性失真小于 0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

电参数计算公式如下:

转换要求输入1V时,其输出频率为1000Hz;输入5V时,其输出频率为5000Hz,从而计算得到Rs=18K,Ri=100K,Rt = 8.8K,Ct = 0.01uf。

3 峰值检波电路

为实现精密的线性整流,必须解决两个问题:(1)改善二极管的非线性特性,以实现良好的线性转换关系;(2)减少二极管阈值电压的影响,使其能对尽可能小的输入信号进行转换。

采用运放和普通二极管组成的有源整流电路,能有效的解决以上两个问题。

设计电路由LM358AD运算放大器,二极管1N5617,电阻,电容等元器件构成。此电路是由一级运放构成,二极管D2至于反馈电路中。运算放大器U3与电容C1一道构成峰值检波电路;运算放大器U1构成跟随器,使峰值检波电路与后面的电路隔离。此部分电路可以记忆并追随输入的三角波,方波,正弦波的最大正峰值并输出检波后的直流电压信号。

4 频率计数显示电路

直接使用十进制计数器74LS160完成对脉冲的计数,同时利用晶振电路产生一秒的高电平,运用门电路及单稳控制计数器在一秒高电平中完成计数。最后使用锁存器计数所得数值并输送给译码显示电路。

4.1 时间基准T=1S产生电路

测量频率是按照频率的定义进行的,若T=1s,计数器显示数字N,则Fx=N。若取T=0.1s,通过闸门的脉冲个数为N1时,则Fx=N1/0.1=10N1。由此可见闸门时间决定量程,T的大小可以通过分频器选择,选择大一些,测量准确度就高一些。根据被测频率选择闸门时间,闸门时间为1S,被测信号频率通过计数锁存可以直接从计数显示器上读出。

这部分的作用就是提供准确的计数时间T,它由高稳度的石英晶体振荡器,分频整形电路组成。无源晶振产生F=32.768KHZ的脉冲,其幅度经过74LS14整形为0-5V的方波,其频率经过四个74LS161计数器进行16次分频,输出频率为0.5HZ的方波信号。

4.2 计数脉冲形成电路

这部分电路的作用是将被测的周期信号转换为可计数的窄脉冲,它一般由放大整形电路和主门(与门)电路组成。被测输入周期信号(频率为Fx,周期为Tx)经放大整形的周期为Tx的窄脉冲,送至与门的一个输入端。主门的另一个控制端输入的是时间基准产生的闸门脉冲。在闸门脉冲开启主门期间,周期为Tx的窄脉冲才能经过主门,在主门的输出端产生输出。在闸门脉冲关闭主门期间,周期为Tx的窄脉冲不能经过主门,在主门的输出端产生输出。

4.3 计数显示电路

这部分电路的作用简单的说,就是计数被测周期信号在闸门宽度T的时间内重复的次数,显示被测信号的频率。它由计数器、锁存器、译码器、单稳态触发器和显示器组成。其中计数器按十进制计数。如果在系统中不接锁存器,则显示器上数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。锁存器的工作是受单稳态触发器控制的。单稳的上升沿作为锁存器的锁存脉冲。

锁存器在锁存脉冲作用下,将门控信号周期T内的计数结果存储起来,并隔离计数器对译码显示的作用,同时把所存出的状态送入译码器译码,在显示器上得到稳定的计数显示。

为了使计数器稳定准确的工作,利用开关的开启闭合产生清零脉冲,使所有的计数器74LS160清零,为下次测量做好准备。

5 理论误差分析

5.1 计数器计数误差(€·误差)

测频时,主门的开启时刻与计数脉冲之间的时间关系是不相关的,也就是说它们在时间轴上的相对位置是随机的。这样,即便在相同的主门开启时间T 内,计数器所得的数却不一定相同,造成多计一个数或者少计一个数。€%=N的取值只有三个值,即€%=N=0,1,-1。所以,脉冲计数的最大相对误差为

式中,fx为被测信号频率,T为闸门时间。

5.2 闸门时间误差(时基误差)

闸门时间不准,造成主门启闭时间或长或短,产生测频误差。闸门时间T是由晶振信号分频而得。设晶振频率为fc,分频系数为K,所以 由误差合成原理可知

5.3 计数测频总差

有误差合成原理可得计数总误差最大为

由于晶振相对量化误差很小,所以忽略不计。将测量下限fc=50Hz代入上式,可得最大频率测量误差约为2%。

5.4 电压峰值检波误差

经过Multisim仿真,输入1kHz,峰峰值为1V的三角波,检波电路输出为0.99446V的直流电压。相对误差为(电压越小,相对误差越大,且方波、正弦波检波误差均小于三角波)。

5.5 电压测量总误差

根据误差合成原理

代入上式计算可得

参考文献:

[1] 康华光.电子技术基础(数字部分)(第五版)[M].北京:高等教育出版社,2005.

[2] 李希文.电子测量技术[M].西安:西安电子科技大学出版社,2008.

作者:张俊 钟知原 王曰根

第二篇:基于PC的数字电压表设计

本文运用AT89S51和AD678进行A/D转换,根据数据采集的工作原理,设计实现数字电压表,最后完成单片机与PC的数据通信,传送所测量的电压值

数字电压表的设计和开发,已经有多种类型和款式。传统的数字电压表各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步分析处理,传统数字电压表是无法完成的。然而基于PC通信的数字电压表,既可以完成测量数据的传递,又可借助PC,做测量数据的处理。所以这种类型的数字电压表无论在功能和实际应用上,都具有传统数字电压表无法比拟的特点,这使得它的开发和应用具有良好的前景。

新型数字电压表的整机设计

该新型数字电压表测量电压类型是直流,测量范围是-5~+5V。整机电路包括:数据采集电路的单片机最小化设计、单片机与PC接口电路、单片机时钟电路、复位电路等。下位机采用AT89S51芯片,A/D转换采用AD678芯片。通过RS232串行口与PC进行通信,传送所测量的直流电压数据。整机系统电路如图1所示。

数据采集电路的原理

在单片机数据采集电路的设计中,做到了电路设计的最小化,即没用任何附加逻辑器件做接口电路,实现了单片机对AD678转换芯片的操作。

AD678是一种高档的、多功能的12位ADC,由于其内部自带有采样保持器、高精度参考电源、内部时钟和三态缓冲数据输出等部件,所以只需要很少的外部元件就可以构成完整的数据采集系统,而且一次A/D转换仅需要5ms。

在电路应用中,AD678采用同步工作方式,12位数字量输出采用8位操作模式,即12位转换数字量采用两次读取的方式,先读取其高8位,再读取其低4位。根据时序关系,在芯片选择/CS=0时,转换端/SC由高到低变化一次,即可启动A/D转换一次。再查询转换结束端/EOC,看转换是否已经结束,若结束则使输出使能/OE变低,输出有效。12位数字量的读取则要控制高字节有效端/HBE,先读取高字节,再读取低字节。整个A/D操作大致如此,在实际开发应用中调整。

由于电路中采用AD678的双极性输入方式,输入电压范围是-5~+5V,根据公式Vx10(V)/4096*Dx,即可计算出所测电压Vx值的大小。式中Dx为被测直流电压转换后的12位数字量值。

RS232接口电路的设计

AT89S51与PC的接口电路采用芯片Max232。Max232是德州仪器公司(TI)推出的一款兼容RS232标准的芯片。该器件包含2个驱动器、2个接收器和1个电压发生器电路提供TIA/EIA-232-F电平。Max232芯片起电平转换的功能,使单片机的TTL电平与PC的RS232电平达到匹配。

串口通信的RS232接口采用9针串口DB9,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连。在实验中,用定时器T1作波特率发生器,其计数初值X按以下公式计算:

串行通信波特率设置为1200b/s,而SMOD=1,fosc=6MHz,计算得到计数初值X=0f3H。在编程中将其装入TL1和THl中即可。

为了便于观察,当每次测量电压采集数据时,单片机有端口输出时,用发光二极管LED指示。

软件编程

软件程序主要包括:下位机数据采集程序、上位机可视化界面程序、单片机与PC串口通信程序。单片机采用C51语言编程,上位机的操作显示界面采用VC++6.0进行可视化编程。在串口通信调试过程中,借助“串口调试助手”工具,有效利用这个工具为整个系统提高效率。

单片机编程

下位机单片机的数据采集通信主程序流程如图2所示、中断子程序如图3所示、采集子程序如图4所示。单片机的编程仿真调试借助WAVE2000仿真器,本系统有集成的ISP仿真调试环境。

在采集程序中,单片机的编程操作要完全符合AD678的时序规范要求,在实际开发中,要不断加以调试。最后将下位机调试成功而生成的.bin文件固化到AT89S51的Flash单元中。

人机界面编程

打开VC++6.0,建立一个基于对话框的MFC应用程序,串口通信采用MSComm控件来实现。其他操作此处不赘述,编程实现一个良好的人机界面。数字直流电压表的操作界面如图5所示。运行VC++6.0编程实现的Windows程序,整个样机功能得以实现。

功能结果

根据上面所述工作原理及实施方案,在实践中很好地实现了整个样机的功能,各项指标达到了预先的设计要求。电路工作稳定,每次测量均伴有LED发光指示,可视化界面显示也正常。

AD678转换精度是12位,它的分辨率为1/4096。这为整机系统的高精度提供了保障。为了提高测量精度,运用了AD678自带的校准电路,这样使其A/D转换精度更高。在实际测量中,整机测量精度达到了0.8%。

作者:王守华 李 智

第三篇:一种简易数字电压表的设计

摘要:在现代检测技术中,常需用高精度数字电压表进行现场检测,将检测到的数据送入微计算机系统,完成计算、存储、控制和显示等功能。本文中的数字电压表的控制系统采用ATMEL 89C51单片机,A/D转换器采用TLC549为主要硬件,实现数字电压表的硬件电路与软件设计。该系统的数字电压表电路简单,所用的元件较少,成本低,调节工作可实现自动化。

关键词:单片机;数字电压表;A/D转换;模拟信号

1、引言

数字电压表(Digital Voltmeter)簡称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2、系统硬件设计

硬件电路设计主要包括:ATMEL89C51单片机系统,A/D转换电路,显示电路。图1是数字电压表硬件电路原理图。

2.1 ATMEL 89C51单片机系统和显示电路

由于单片机体积小、重量轻、价格便宜,所以本系统采用ATMEL 89C51单片机,其原理图如图1所示。

89C5l的P1、P3.0~P3-3端口作为四位LED数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作TLC549的A/D转换数据读入用,P2端口用作TLC549的A/D转换控制。

2.2 A/D转换电路

D/A转换电路就是将数字信号转换成模拟信号的电路。数据转换精度和转换速度是衡量D/A转换器的重要指标。A/D转换由集成电路TLC549完成。TLC549 A/D转换电路如图2所示。TLC549具有8路模拟信号输入端口,地址线(23~25脚)可决定对哪一路模拟信号进行A/D转换。22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存。6脚为测试控制,当输入一个2 s宽高电平脉冲时,就开始A/D转换。7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平。9脚为A/D转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出。l0脚为0809的时钟输入端,利用单为0809的时钟输入端,利用单片机30引脚的六分频晶振频率再通过14024Z分频得到1MHz时钟。

3、系统软件设计

3.1 初始化程序

系统上电,初始化程序将70H~77H内存单元清0,P2口置0。系统默认为循环显示8个通道的电压值,当进行一次测量后,将显示每一通道的A/D转换值,每个通道显示时间为1 S。70H~77H内存单元存放采样值,78H~7BH内存单元存放显示数据,依次为个位、十位、百位、通道标志位。

3.2 A/D转换子程序

A/D转换子程序用来控制对0809/k路模拟输入电压的A/D转换,并将对应的数值存入70H~77H内存单元。

3.3显示子程序

显示子程序采用动态扫描实现四位数码管的数值显示。测量数据在显示时需转换成BCD码放在78H~7BH内存单元中,其中7BH存放通道标志数。R3作为8路循环控制,R0用作显示数据指针。

4、结语

51系列单片机系统在实际中应用广泛。该系统的数字电压表电路简单,所用的元件较少,成本低,设计简单,容易实现,适合于要求不同的电子技术应用领域。

参考文献:

[1]《新课程的深化与反思》余文森 、吴刚平著 首都师范大学出版社 2004.1

[2]《单片机原理与应用——基于Proteus与Keil C》林立著 电子工业出版社 2009.7

[3]《点子线路综合设计》,谢自美[J].北京:华中科技大学出版社,2006.

[4]《单片机原理、应用与PROTEUS仿真》张靖武著 电子工业出版社 2008.8

作者:郝岷

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:旅行社经营论文范文下一篇:工程热物理论文范文