发酵生产实习报告范文

2024-07-06

发酵生产实习报告范文第1篇

发酵工程的定义

发酵工程是指通过生物(主要是微生物)的某些特定功能,结合现代工程技术直接应用于工业生产并制造出产品的一项技术。发酵工程的内容包括菌种的选育、培养基的配置、灭菌、扩大培养和接种、发酵工程和产品的分离提纯等方面。发酵工程的应用主要在医药工业、食品工业、化学工业、能源工程、环境科学领域,其中在食品工业的应用主要有三大类产品,一是生产传统的发酵产品,如奶酪、啤酒、酱油、食醋等;二是生产食品添加剂,改善食品的品质及色、香、味;三是帮助人们解决粮食问题。

发酵工程在食品领域的应用

低聚糖。低聚糖又称寡糖,是2个或3个以上单糖组成的糖,被广泛用于功能食品中。在食品工业中,主要利用酶水解法或酶转换法来生产低聚糖。徐艳冰采用基因工程手段克隆黑曲霉的内切菊粉酶基因,使其在毕赤酵母中高效表达,内切菊粉酶工程菌株在3L发酵罐中,初始诱导菌浓OD600nm为180,诱导温度28℃,pH值5,溶氧维持在20%左右,诱导表达120h,酶活为858U/mL。该重组内切菊粉酶制备低聚果糖的最佳反应条件为温度60℃,pH值6,底物用量400g/L和酶用量40U/g菊粉;此条件下重组内切菊粉酶水解菊粉4h时,低聚果糖产量最高,为365.1g/L。

L-肉碱。M- L-肉碱是营养补充剂,合成方法有直接提取法、化学合成法、酶转化及微生物发酵,国内主要采用化学合成,但此法污染环境,并浪费D-肉碱,而生物转化法既不污染也不浪费,因此用生物转化法合成L-肉碱成为如今的研究热点。早在1996年,瑞士在捷克的工厂就利用γ-丁基甜菜碱为底物转化生成L-肉碱,在假单胞菌、农杆菌等微生物中含有γ-丁基甜菜碱转化酶的菌株。用具有较高酶活力的γ-丁基甜菜碱转化酶微生物菌株在发酵罐中培养,当加入前体γ-丁基甜菜碱继续发酵时,产肉碱量可以达到60g/L,转化率在90%以上。

食品防腐剂。枯草芽孢杆菌是一种非致病型细菌,在生产代谢过程中产生的抗菌肽,可抑制食品中真菌、细菌、酵母菌的生长,且无毒、无残留、抑菌效果显著、无耐药性。规模化培养枯草芽孢杆菌是食品领域的关键技术之一,枯草芽孢杆菌采用高密度发酵、补料的方式扩大培养。目前,补料策略包括分批发酵、连续发酵、补料分批发酵3种。

发酵法生产新型食品。

(1)红薯饮料:甘薯作为我国主要农作物,具有较高的营养价值,高附加值的甘薯食品已成为当今市场研究的热点。以甘薯为主要原料,通过优化发酵液制备条件,利用乳酸菌和啤酒酵母發酵固定化发酵特点,可制备一种具有较高营养价值和纯正风味的发酵饮料。在甘薯发酵饮料制备过程中,通过进一步优化发酵液制备条件,将甘薯通过切片、热烫、打浆、蒸煮、酶解、过滤以及调配等工艺过程。甘薯切片以后在95℃下热烫5min,从而实现最佳的护色效果,同时能够使薯浆更加的细腻均匀;95℃下糊化30min,薯浆当中的淀粉可以充分的糊化,并防止蒸煮味的产生;饮料的料水配比为1:6时,饮料具有最佳的色泽、香味以及口感。

(2)猕猴桃果醋及其果醋饮料的研究:以成熟猕猴桃为主要原料,通过酒精发酵以及醋酸发酵进行猕猴桃果醋生产。通过对比试验确定酒母配比(果酒酵母与酒精酵母比2∶1)以及适宜的发酵条件(酒精发酵25℃、48h,醋酸发酵34℃、16d)与澄清的具体方法,最终将果醋调配成果醋饮料。

综上所述,现代食品工业发展迅速,充分显示出发酵工程具有很强的生命力。因此我们要加强现代发酵工程在食品工业中的应用,增加食品的性能和附加值,生产出更多种类的食品,使现代发酵工程和食品工业得以稳定发展。

发酵生产实习报告范文第2篇

关键词: 生物技术专业 发酵工程 教学改革 应用型人才

发酵工程是以微生物的特定性状和功能为基础,通过现代化工程技术生产产品或直接应用于工业化生产的技术体系[1]。它结合生物学和工程学的特点,涉及微生物学、生物化学、数学、化学工程、机械设备等多门学科。发酵工程具有应用性强和实践性强的特点,是生物技术在农业、医药、化工、食品、环保等领域应用发展的支撑点,是生物技术产业化的关键和必由之路。

教育部2010年启动了“卓越工程师培养计划”,致力于培养适合经济和社会发展需要的工程技术人才[2],以增强学生的实践能力和创新能力。衡水学院也正致力于向应用型大学转型,探索对应用型人才的培养。《发酵工程》是我校生物技术专业开设的专业必修课程。做好发酵工程课程的建设与改革,对学生综合能力的发展、进入相关行业时快速入手等起着重要作用。

本文结合卓越工程师教育培养计划的背景及应用型人才培养的需要,结合本校的课程设置和教学活动,通过优化课程内容体系、改进教学方法、加强教学与企业互动和优化考核方式等方面进行探索与分析,对发酵工程的教学改革进行思考。

1.教学内容的优化与更新

衡水学院《发酵工程》课程的设置,是在完成基础课和部分专业课的基础上进行的。但随着应用型人才培养方案的提出,理论课时缩减,只有32个学时,因此必须对教学内容进行优化。在此之前,学生已学习了一些本课程的相关知识。根据生物技术专业学生的实际教学情况,对已掌握的不再重复讲授,着重复习以突出重点。如在菌种选育一章,由于在微生物学中已详细讲解过各种选育方法,本课程中以问题方式引出,引导学生归纳总结,模糊的地方课下通过网络平台复习。对下游提取分离的技术,在生物工业下游技术课程中会详细介绍,所以授课主要集中于对发酵工程上游技术和中间控制的学习。

课程内容的安排上,我们力将发酵工程研究对象共性的规律提炼出来,在理解发酵机制的基础上,按照发酵过程的主线编排教学内容,包括:菌种选育→培养基→灭菌与空气除菌→种子扩培→发酵机制→发酵过程控制→染菌分析及防治→发酵经济学。同时以动力学模型和发酵设备为辅,坚持生物学基础和工程学基础并重,要求学生注重理论基础和实践操作相结合。这样安排有利于学生清楚、完整地掌握整个发酵工艺过程和发酵的共性问题,为后续课程和科学研究的顺利开展奠定基础。

同时,衡水学院为学生开设了多门和发酵工程相结合的专业课程和实践环节,包括发酵工程设备、发酵工程设备实验、发酵工程大实验、生物工程下有技术、酿酒概论等,形成了以培养发酵应用型人才为目的的课程群,对发酵工程的原理和技术进行强化。

除了丰富教学内容外,增加新知识、介绍最前沿的科技动态也尤为必要。教师应通过阅览国内外专业期刊及网站,将国内外最新的科研动态和成果分门别类地穿插在相关章节中进行讲解,使学生拓宽视野,增强学生的学习主动性。

经过以上优化调整,使发酵工程的教学体系更加清晰,教学内容环环相扣,学生能够更好地理论联系实际对课程进行掌握。

2.教学方法的改进

2.1激发学生的学习兴趣

兴趣是最好的老师。根据教学总结,学生对发酵工艺在生产实际中的应用了解甚少。因此,结合日常生活中的具体实例在绪论部分介绍现代发酵工业的发展历史、产业概况、生产生活中的产品介绍和未来展望等内容,从而激发学生的学习兴趣,为以后的教学奠定基础。

2.2案例教学

发酵工程是一门应用性强的学科,在授课过程中,引入与生产实践联系紧密的案例并进行剖析讲解不仅能使课堂生动形象,而且能引导学生自主思考,加深学生对理论知识的理解,触类旁通。如发酵工程课程中的发酵工艺控制这一部分内容,要求学生了解并掌握培养pH对发酵过程的影响。为此,我们从相关文献报道中特意选取了一些研究案例,如“pH对林可霉素发酵的影响”,该研究表明不同初始pH会显著影响林可霉素的产量。通过实例讲解,可以让学生印象深刻并强化对具体知识要点的领会。

2.3引入PBL教学理念

PBL是以问题为基础,以学生为中心,培养学生自学能力,发展学生综合思考能力和解决实际问题能力的教学理念。在实践性强的《发酵工程》课程中引入PBL教学理念,通过提出问题、收集资料、小组讨论、总结评价等环节开展发酵工程PBL教学改革以提高教学实效。

按照发酵工艺类型分成多个PBL课程教学模块,设计基础性问题,如酒精等发酵机制类型及发酵工艺特点等;再设计开放性问题,如由酒精发酵延伸总结乳酸、甘油等发酵工艺特点。学生自由分组。首先,各小组对基础性问题查阅文献,组内讨论,再选派代表进行总结汇报。各小组提问,汇报组成员补充说明和回答,最终形成解决方案。教师对课程实施过程中出现的不足问题再给予指导,提出改进意见及下一步要求,帮助学生理清思路和改进方法。

2.4现代化教学手段的利用

为加深学生对发酵工程课程的理解,提高授课效率,充分利用多媒体课件,将难于理解的内容以图片和视频等形式向学生展示[3]。例如,针对培养基灭菌的操作流程,采取设备示意图和动画相结合的方式,形象展示蒸汽灭菌的过程。针对发酵过程控制环节,利用仿真教学软件,让学生形象地认识发酵工程设备,理解发酵过程的调控手段及产品分离过程。

同时,建设发酵工程的网络教学平台,以提供多媒体课件、文献资料和发酵相关企业网址链接。学生通过拓展学习,能够较好地了解国内外发酵领域的发展趋势。

3.教学与企业参观互动

衡水学院在开设发酵工程课程时,目标定位在为企业培养发酵工程所需的应用型人才。为了提高学生对发酵技术产业的认识并强化他们的工程化概念,增强学生自主性及生产实践能力,在学期中学院专门安排学生到衡水当地典型的发酵生产企业,如衡水老白干酿酒集团、衡水九州啤酒厂等进行参观,了解工厂基本生产过程,熟悉发酵工厂生产的基本知识和必须生产设备。如在啤酒厂的实习过程中,重点让学生掌握啤酒的生产工艺流程,原料的粉碎、蒸煮糖化及典型的厌氧发酵过程。将书本上的理论知识与生产实践相结合,让学生了解生产中常遇到的难以解决的问题,启发学生的创造性与开拓性,有助于学生创新思维的形成和能力的提高。

参观后要求每个学生围绕企业的生产工艺,独立地完成实习报告,作为实践成绩的考核。该方法不仅使学生带着任务熟悉发酵工艺流程与生产工艺控制等环节,而且培养学生生产实践技能和基本工程意识,为今后他们走上工作岗位打下好的工程基础,达到较好的教学效果。

4.优化考核方式

考试是教师评定学生成绩、取得教学反馈信息的主要方法,也是督促学生全面、系统复习的重要手段[4]。从单方面考核,会使学生死读书,读死书,达不到举一反三的效果。我们采用复合考核方式对学生进行评价,建立以基本知识、技能为基础,以综合能力为重点,以学习态度为参照的综合考评体系。将发酵工程理论课程的考核分为3个部分,即平时成绩(15%)、实践考核(15%)和期末考核(70%)。平时成绩包括学生课堂表现、出勤情况、作业等;实践考核包括参观发酵工厂后撰写的报告及在实践活动中的参与度和表现。期末考核为闭卷笔试,由基础理论题、实际应用题和工艺设计题等组成,重点考查学生对基础理论和重、难点知识的掌握。

这种多方位的考核突破了传统的考核方式在考试内容的深度和广度方面存在的局限性,全面考核了学生对知识的掌握情况。

发酵工程是生物技术专业的一门核心课程,也是一门发展迅速的学科。随着新型生物反应器的不断出现,发酵新产品不断涌出,要求发酵工程专业课教师根据发酵工程产品市场不断改革和探索,实时更新授课内容,灵活采用各种教学方法和考核方法,加强与企业的联系,并强调工程观念和实验技能的培养。这样才能真正提高学生综合素质,为社会培养复合应用型人才。

参考文献:

[1]杨梅,李力群,谢莹,等.发酵工程课程建设的实践与探索[J].吉林化工学院学报,2011,28(2):46-48.

[2]潘艳平,包秋燕,江吉彬.基于卓越工程师培养的本科实践教学体系改革[J].实验室科学,2011,14(6):213-220.

[3]赵晶,朴永哲,权春善,等.基于应用型人才培养的发酵工程教学改革的探索与思考[J].轻工科技,2014,3:153-154.

[4]付永前,朱华跃,蒋茹.结合台州经济转型探索发酵工程教改新模式[J].科教文汇,2011,6:51-53.

衡水学院教改项目:《发酵工程》课程教学改革研究。课题编号:jg2014049.

发酵生产实习报告范文第3篇

1 材料与方法

1.1 种子、培养基

选取保藏于天津科技大学实验室的菌种SG~56 为研究对象;自行制作种子培养基及发酵培养基。其中种培养基成分为20 g/L葡萄糖、6g/L酵母粉, 20g/L蛋白胨, p H7.0, l0g/LNa C 。而发酵培养基组成为37 g/L葡萄糖, 4.5 g/L酵母粉, 17 g/L大豆蛋白胨, 初始p H7.0。

1.2 种子培养液

在斜面种植所研究菌种SG~56, 进行7~10d培养, 之后将斜面上的孢子用生理盐水洗下, 孢子悬浮液此时可达到大约108cfu/m L的浓度, 在增殖培养基上将孢子悬浮液接种上去, 培养基为100m L/500m L, 接种量达一定水平, 之后进行摇床培养, 这个过程需要在一定温度下进行, 培养时间为24h。所有步骤完成后即会得到种子液。

1.3 发酵

此过程需要应用发酵培养基200m L, 将上述步骤所获得的种子液接种于培养基上后置于1000m L三角瓶中, 继续摇床培养, 停止时间约为发酵后一定时间后。

1.4 分析

高效液相色谱法为此实验所用的分析方法, 色谱柱为p He⁃nomenexprodingy 5u ods3 100A, 流动相则为甲醇~水~磷酸, 按照一定体积比进行, 一般为85:15:0.15, 在室温下以1m L/min流速20u L进样, 方法为外标法, 纳他霉素为1.972min的保留时间, 应用紫外线进行检测, 结果显示为303mm波长。

2 结果、讨论

2.1 温度的影响

微生物的生长速度受温度的影响, 主要表现在两个方面。首先, 细胞内生化反应的速度与温度条件有关, 在某一范围内, 温度越高生化反应的速度也越高, 但温度过高则可能导致细胞的结构和反应受到破坏, 反而降低了生长的速度。其次, 催化生化反应的酶的活性与温度条件也具有相关性, 合适的温度能够使酶的活性达到最大, 从而使其催化的反应速度达到最大。第三, 微生物对于温度比较敏感, 其中主要成分如核酸、蛋白质等对温度的高低要求都比较高, 在其它条件不变的情况下, 不同温度下其生物功能也会有差别, 发酵结果也不同, 具体如表1。

2.2 接种量的影响

菌种的生长繁殖速度与发酵过程具有明显的关系, 在一定范围内增加接种量可能增加繁殖的速度, 但接种量过大会造成菌体过快生长, 造成溶氧及基质不足, 最终合成抗生素将会产生影响;但接种量如果过小则菌体前期生长就会较慢, 周期过长, 出现发酵异常或染菌。故保证发酵正常进行是需要控制合适的接种量。从表2可知, 接种量2%时纳他霉素的产量最高。

3 结论

根据实验结果得出结论, 即29℃的发酵温度、2%的接种量是纳他霉素的发酵的最佳条件。

摘要:对发酵生产纳他霉素的影响因素进行研究, 从而找出生产该药物最佳发酵条件, 即不同的温度会产生不一样的影响, 29℃则为最佳温度;不同接种量效果也会有差别, 2%为最合适接种量。

关键词:纳他霉素,温度,接种量,溶解氧,种龄

参考文献

[1] 杨庆尧~食用菌生物学基础[M]上海:上海科学技术出版社, 1985.

[2] 谢宝贵, 等~食用菌与加工实用技术[M]北京:中国农业出版社, 1994.

[3] 高福成主编~现代食品工程高新技术[M]北京:中国轻工业出版社, 1997.

发酵生产实习报告范文第4篇

二、实习单位:河南金利尔奶业有限公司

三、实习目的:

这次实习是在完成相关基础课程的学习后所进行的实践环节。通过到工厂生产环节的实习和观摩,我们进一步巩固加深课堂所学过的理论知识,加强我们对专业的认识,进一步的了解自己所学知识的用途,使我们更加坚定自己的学业,锻炼我们的意志力,培养我们的兴趣。从而将理论和生产实践结合,使我们对发酵企业有一个初步的了解。

四、实习内容

公司简介:

河南金利尔奶业有限公司成立于1999年12月,占地面积10000平方米,交通、通讯等条件十分便利。企业坚持“健康饮品,造福社会”的宗旨,树立了“消费者满意为中心”的服务理念。多年来,公司在市委、市政府的关心支持下,在各级领导的关怀与帮助下,公司以科学发展观为指导,建立了运营规范、管理科学、开拓创新、科技强企、质量求精的管理体制,使企业得到了快速发展,金利尔系列产品得到了广大城乡居民的认可与喜爱,金利尔品牌已经走进千家万户。公司已成为豫北地区享有盛誉的一家集奶牛养殖、乳品生产、产品研发、营销服务于一体的乳制品精加工企业。公司采用“公司+基地+农户”的运作模式,有力带动了周边地区畜牧产业发展,建立了可靠、稳定的利益联盟机制。从奶牛特种养殖到饲料加工,从收购农作物秸

秆加工青贮饲料到沼气站的筹建,已形成了适度规模的农业产业化生态与环境保护的产业链条。不仅提高了城乡居民的生活质量,而且帮助周边农民实现了脱贫致富,实现了将企业建设成为“龙头企业”的发展目标。

什么是酸奶

酸奶是以新鲜的牛奶为原料,经过巴氏杀菌后再向牛奶中添加有益(发酵剂),经发酵后,再冷却灌装的一种牛奶制品。酸奶不但保留了牛奶的所优点,而且某些方面经加工过程还扬长避短,成为更适合于人类的营养保健品。酸奶根据组织状态分为凝固型和搅拌型酸奶。凝固型酸奶适于纯牛奶的生产,搅拌型酸奶可用于果味、果料等花色酸奶的生产。一般凝固型酸奶要有比较好的组织状态,要避免裂纹的出现,因此要先搅拌,分装再发酵。带有果味的酸奶影响乳酸菌的发酵,所以要先发酵后搅拌加果料的方式。

酸奶的好处:

1. 酸奶能促进消化液的分泌,增加胃酸,因而能增强人的消化能力,促进食欲 。

2. 酸奶中的乳酸不但能使肠道里的弱酸性物质转变成弱碱性,而且还能产生抗菌物质,对人体具有保健作用 。

3. 酸奶可以防止癌症和贫血,并可改善牛皮癣和缓解儿童营养不良 。

4. 制作酸奶时,某些乳酸菌能合成维生素C,使维生素C含量增加 。

5. 在妇女怀孕期间,酸奶除提供必要的能量外,还提供维生素、叶

酸和磷酸;在妇女更年期时,还可以抑制由于缺钙引起的骨质疏松症;在老年时期,每天吃酸奶可矫正由于偏食引起的营养缺乏 。

6. 酸牛奶能抑制肠道腐败菌的生长,还含有可抑制体内合成胆固醇还原酶的活性物质,又能刺激机体免疫系统,调动机体的积极因素,有效地抗御癌症,所以酸牛奶,可以增加营养,防治动脉硬化、冠心病及癌症,降低胆固醇。

酸奶发酵原理

原理:将乳酸菌接入牛奶,采用恒温发酵法,通过乳酸菌发酵牛奶中的乳糖产生乳酸,乳酸使牛奶中酪蛋白(约占全乳的2.9%,占乳蛋白的85%)变性凝固而使整个奶液呈凝乳状态。

机制:乳酸菌发酵可分为同型乳酸发酵和异型乳酸发酵,同型乳酸发酵乳糖只产生乳酸,异型乳酸发酵乳糖除产生乳酸外,还生成乙醇、一氧化碳等物质。在酸奶制作中常用的德氏乳杆菌保加利亚亚种(保加利亚乳杆菌)和唾液链球菌嗜热亚种(pn热链球菌)均为同型乳酸发酵[4]。第1机制:从大肠杆菌开始,许多细菌都是用此系统,在酸奶制作中常用的保加利亚乳杆菌和嗜热链球菌也是用此系统。乳糖通过透膜酶的作用进入细胞内,经尽半乳糖有酶的作用分解为葡萄糖和半乳糖,其中嗜热链球菌和保加利亚乳杆菌优先代谢葡萄糖成乳酸,而对游离型的半乳糖不能利用,其被排除细胞外或转化成高分了物质一胶糖而蓄积起来。 第2机制:分布在乳酸乳球菌乳酸亚种(乳酸乳球菌)十酪乳杆菌十酪亚种(十酪乳杆菌)等菌属中。乳糖通过细胞膜上磷酸转移酶作用,经磷酸化后进入细胞内。磷酸乳糖经磷酸半乳糖酶的作用,分解成葡萄糖和6-磷酸半乳糖。

酸奶生产流程

凝固型酸奶的生产工艺流程:原料乳→标准化→过滤→预热→均质→消毒→降温接种→装瓶封口→保温发酵→入冷库后熟→抽样检验→

入库销售

搅拌型酸奶的生产工艺流程:原料乳→标准化→过滤→预热→均质→消毒→降温

接种→保温发酵→搅拌添加香料等→封瓶装口→入

冷库后熟→抽样检验→入库销售。

生产工艺简介

原料乳的处理

乳的净化:

利用的别设计的离心机出去牛乳中的白细胞和其他肉眼可见的异物。

脂肪含量标准化:用分离机对牛乳进行脱脂,影响口感。

在加入少量稀奶油,是调制如脂肪含量标准化。

配料:

奶粉的添加:加入1%~3%的奶粉调节非脂干物质。蔗糖的添加:加入4%~8%的蔗糖调节酸奶的口感。 均质:

将调制奶加热到60 °,与均质机中,8~10Mpa压力下均质。 灭菌:

采用高温巴氏杀菌法,90~95℃保持5min杀菌。

接种:

向43~45℃的灭菌原料奶中加入工作发酵剂,一般量为2%~

3%,工作发酵剂为嗜热链球菌和保加利亚乳杆菌,比例为1:1或2:1。

分装:

酸奶发酵后不能受到机械振动,因此,必须先分装再发酵。 发酵:

将分装好的牛乳至于发酵架中发酵,温度保持在40~43℃。一般发酵3~6小时。

冷却:

发酵完成后,用冷风迅速冷却到10℃左右,防止发酵过度使酸度过高料鲜奶的质量要求

固形物含量:鲜奶总干物质含量不得低于11.5%,其中非脂干物质不得少于8.5%,否则会影响蛋白质的凝乳作用。

鲜奶中残留抗生素的检测:抗生素污染会使乳酸菌生长受到限制,因此决不能使用抗生素污染的鲜奶为原料。

白细胞检测:白细胞含量常常会影响鲜奶的质量。

菌检测:霉菌、酵母菌、芽孢杆菌、大肠杆菌等等杂菌会影响鲜奶原料的质量。

冷藏和后熟:

经冷却的酸奶放在-1~0℃冷藏室中保存。

五、实习感悟

通过这次实习让我学会很多,不仅巩固了我们所学的知识,而且增加了我的人生阅历,让我提前认识到工作的辛苦,也能更

发酵生产实习报告范文第5篇

1 微生物药物的类别

借助一些科学原理和方法,制造出一些专门用于治疗或者预防的药物,这些药物就可以叫做微生物药物。这些药物是借助对发酵环境温度的控制,还有某些特定剂量的营养成分,从而制造某些药物的微生物[1] 。大部分的抗生素药物,都可以利用微生物制造出来[1] 。

2 微生物发酵制药

微生物制药的技术有许多种,可以借助两个标准来判定应用的是哪一种微生物制药技术。这两个标准分别是:微生物的发酵环境,还有就是微生物发酵存放的设备。并且还可以根据微生物发酵环境的分别,将微生物发酵技术的分成下面几种类别:一种是好氧型;一种是厌氧型,还有一种是兼性厌氧型。对于这三种类型的微生物发酵技术,主要判定的依据就在于,微生物的发酵环境是否需要氧气的参与。好氧型发酵技术需要在有氧气的环境下进行,厌氧型微生物发酵技术对环境的需求是,不能有氧气的参与。对于兼性厌氧发酵技术则对环境有无氧气并没有多大的要求。依据微生物发酵存放设备的不同,可以将微生物发酵技术分为四种类型:一种是敞口发酵;一种是密闭发酵;一种是浅盘发酵;还有一种是深层发酵。对于敞口发酵,不需要太复杂的操作,并且使用的器具也较为简单[2] 。深层发酵的要求就更多也更为复杂。目前,在发酵工艺中,可用于发酵的微生物种类非常多。许多非人工合成的要素也可直接当做发酵的催化物[2] 。可以选用非人工的变异株进行发酵,这样可以降低成本,对原料的获取也较为便利。

3 精简的发酵工艺过程

3.1 提前制造菌种

对于发酵工艺,在进行发酵工艺之前,先要进行菌种的选用以及纯化,保证菌种的制备。同时,在进行发酵时,还需要定期对菌种进行选育以及优化。

3.2 对种子的培育

对于种子的培育,就是指激活培养设备中休眠的菌种。将保存菌种的设备打开,把设备中存放的生产菌种放到试管斜面的培养基中,然后,激活试管斜面培养基中的菌种,并且让种子罐中的一些微生物进行繁殖,同时还要对微生物进行提纯。从而得到种子,这种种子,就是由菌种提纯而来。菌种的相关能力,还有制备的方式,提纯的纯度等,都会对发酵物产生直接的影响。有非常多的方式可以对种子进行培养。比如,用菌丝进罐培养的方法,利用摇瓶培养,把摇瓶种的液体直接接入到种子罐,然后直接在种子罐中让菌种繁殖。还有一种方法是孢子进罐培养。这种培养方式就是直接利用种子罐对孢子进行培养。要依据菌种不同的性质,选择何种培养的方式。

3.3 菌种对发酵物的发酵

在发酵工艺中,有一个非常重要的菌种培养环节,就是在无菌的状态下,培养纯种的微生物。菌种培养需要在严格的无菌环境下进行,因此,在进行菌种培养之前,对菌种培养所需要用到的设备,以及所需处在的环境进行消毒处理。对培养设备进行消毒可以选用饱和蒸汽,只需要将120摄氏度的饱和蒸汽维持三十分钟就可以。

3.4 游处理

在处理完上述的整个微生物发酵的工艺中,需要进行最后一步游处理。游处理需要先将发酵液中的微生物细胞提取出来,得出的就是发酵的产物,利用发酵工艺得出的产物,可以用作生物药物的制作生产。

4 结论

在我们生活的世界中,存在着许许多多的微生物。这些微生物对人类的生产生活起着非常大的作用,目前,对微生物应用最广泛的领域就是制药领域。借助微生物的发酵作用,人类可以生产对人类健康有益的药物。微生物的种类很多,对微生物的发酵技术也是多种多样。一般的微生物的发酵过程分四步:制造菌种、对菌种的培育、菌种对发酵物的发酵、对微生物的游处理。通过这个发酵过程,可以制造种类繁多的药物。通过发酵技术的广泛应用,微生物对人类的生产生活起着越来越大的作用。

摘要:微生物是一种人肉眼难以直接看到的非常小型的原生生物。微生物的用途非常的广泛,在非常多的领域,都有微生物的用武之地。而微生物发酵,一般就是指借助微生物自身的代谢能力,帮助人们制造人们想要的东西。本文讨论的就是微生物在制药领域中发挥的作用。

关键词:微生物,发酵,制药技术

参考文献

[1] 孙静,景元享.微生物发酵制药的研究[J].黑龙江科技信息,2012,07:29-15.

发酵生产实习报告范文第6篇

摘要:啤酒糟是啤酒生产的主要副产物,含有丰富的营养成分,具有较高的经济开发价值。论述啤酒糟在饲料、食用菌栽培料、休闲食品、复合氨基酸、纤维素酶、饮料、膳食纤维等方面的应用,以期为啤酒糟的深加工再利用提供参考。

关键词:啤酒糟;营养成分;深加工;再利用

啤酒糟又称麦糟、麦芽糟,是啤酒工业中的副产物,也是以大麦为原料,经发酵提取子实中可溶性碳水化合物后的残渣,含有丰富的营养成分。邓启华等对燕京啤酒厂的啤酒糟进行分析,结果表明,啤酒糟中含粗纤维13.4%,中性洗涤纤维49.2%,半纤维素31.5%,纤维素14.7%;40目筛过筛率达到65%,过筛后的蛋白质含量达39.1%。PRENTICE N等分析显示,啤酒糟干基含蛋白质31%、戊聚糖19%、木质素16%、淀粉和葡聚糖12%、纤维素9%、脂肪9%、灰分4%。啤酒糟的各项营养成分均高于麦麸和米糠,可与谷物粮食相媲美。另外,啤酒糟中还含有丰富的维生素、矿物质等营养成分。在国外,啤酒糟广泛应用于饲料、医药、食品等行业。我国对啤酒糟综合利用的深入研究起步较晚,利用情况并不乐观,多数被用作饲料,另一部分作为废弃物被排放掉,这样既造成浪费又污染环境。

1 啤酒糟再利用综述

1.1 用作饲料

啤酒糟干燥后可用于配合饲料。啤酒糟含水量较高,使用离心式压榨等方法脱除部分水分,使含水量由80%降到55%~60%后,再利用气流干燥机将含水量降至12%以下,进而得到干燥啤酒糟粉。将干燥啤酒糟粉加工成饲料,既可以提高保存期,又能节省运输费用。贾才华等筛选出一株产纤维素酶能力较强的真菌——粗壮脉纹孢菌,拟利用这一特性降解啤酒糟粗纤维,为啤酒糟动物饲料开发利用提供一种更为有效的途径。郭建华以糖糟和啤酒糟为原料,利用酵母菌生产蛋白饲料,试验结果表明:在糖糟与啤酒糟7∶3的配比条件下,固态法发酵60 h,发酵温度30 ℃,每克发酵基质中可得酵母95亿个,发酵基质粗蛋白含量从25%提高到36%。

1.2 用作食用菌栽培料

啤酒糟含有微生物生长所需的碳源、氮源、无机盐等,是一种良好的食用菌栽培料,适合平菇、鸡腿菇、金针菇、蛹虫草等食用菌菌素生长。啤酒糟与小麦混合培养黄酒麦曲,不仅节约粮食,而且生产出的黄酒麦曲各项指标均达到纯小麦制曲的要求,混合原料制曲生长快,菌丝繁殖好。

牛斌等以啤酒糟为栽培原料,研究灭菌过程及不同配方对双孢菇菌丝生长、子实体性状及产量的影响。结果表明:装袋灭菌法可降低栽培染菌率,配方中加入啤酒糟可以提高菌丝生长速度。啤酒糟与牛粪、玉米芯共同培养的双孢菇子实体性状较好且产量最高。

叶春苗利用啤酒糟栽培蛹虫草,通过单因素试验考察培养基中啤酒糟与大米的组成比例、培养基含水量、培养基起始pH、培养温度和光照对蛹虫草子实体产量和质量的影响,并在此基础上设计正交试验,通过正交试验选出啤酒糟栽培蛹虫草的最佳栽培条件为:啤酒糟与大米比例1∶1,含水量65%,瓶底转色后于23 ℃、光照强度700 lx下培养,每瓶产量为3.24 g。

1.3 生产休闲食品

郑州粮食学院王兰等将啤酒糟干燥后粉碎至一定的粒度,制成啤酒糟粉,然后以该粉为原料,加入一定量的粘合剂,采用油炸或烘烤等方式制作高膳食纤维、高蛋白风味小食品,同时以不同类型、不同含量的啤酒糟粉作为食品添加剂,制作面包和饼干。郭萌萌等将啤酒糟干燥筛分后与玉米糁混合加工成膨化食品,并将啤酒糟粉添加到饼干粉中生产营养丰富、麦香味突出的高膳食纤维饼干。AINSWORTH P等研究啤酒糟添加量对小食品物理和营养特性的影响,结果表明,含有一定量啤酒糟的小食品,营养价值和可消化性都较高。

1.4 生产复合氨基酸

以啤酒糟为主要原料,采用多菌种混合发酵生物工程技术,利用微生物体内的纤维素酶、淀粉酶将原料中的纤维素和淀粉降解成能被微生物吸收利用的糖,使之生长发育,再分泌多重蛋白酶。李娜等通过醇-碱法进行蛋白质提取研究,对影响蛋白质提取的因素如醇碱比、温度、时间、料液比等进行正交试验,确定获得最大提取量的条件为:乙醇碱比为1∶2(作为提取剂),提取温度30 ℃,提取时间为70 min,提取料液比为1∶30。肖连东等通过酶解法提取啤酒糟中蛋白质,并确定最佳工艺条件为:水解蛋白酶的添加量为0.02 mL/g干啤酒糟,反应温度为60 ℃,pH 8.0,反应时间5 h,固液比1∶12;在此条件下,水解蛋白提取率为63.6%。同时,采用高效液相色谱法对酶解料液中的18种氨基酸含量进行分析,确定18种游离氨基酸含量占总蛋白含量的24%,其中必需氨基酸占游离氨基酸的39%。功能性研究表明,该蛋白具有很薄的溶解性和乳化能力。

1.5 生产纤维素酶

以啤酒糟为主要原料,在添加适量的麸皮、稻草和无机盐后,利用里氏木霉固体种曲混合接种固态发酵96 h,CMC酶活达250 u/g左右(鲜曲)。该研究正在深入探讨,试图通过选育菌种改善发酵工艺条件,建立和优化发酵控制,提高酶活,为大规模工业化生产纤维素酶开创新途径。

1.6 制作饮料

付全义等以水提法提取啤酒糟水溶性多糖并以此为辅料,研制复合果汁饮料。通过对多糖复合果汁饮料的稳定性进行研究发现,以3 g/L耐酸MC和4 g/L阿拉伯胶作为混合稳定剂,在13 000 r/min的均质速度下均质75 s,得到的饮料沉淀率最低为0.797%,稳定性和组织状态皆良好。研究表明,果汁饮料对加热敏感,不同杀菌方法对果汁营养成分及风味物质的破坏程度不同。微波杀菌法有利于VC及风味物质的保存,同时耗能小,在300 W的微波功率下杀菌75 s,VC保存率为90.38%,杀菌率为100%。啤酒糟多糖复合果汁中的水溶性多糖含量0.02 g/ml、VC含量0.189 7 mg/mL、蛋白质0.002 029 g/mL,这表明此复合果汁饮料产品是补充VC和多糖的优质饮料。

1.7 制取膳食纤维

从啤酒糟中提取膳食纤维较为复杂,这是因为啤酒糟中含有大量蛋白质及少量的淀粉和脂肪,在提取过程中首先要除去这些成分。王金华等利用酶法提取啤酒糟水不溶性膳食纤维发现,在75 ℃下加入0.6%的木瓜蛋白酶和0.2%的α-淀粉除去蛋白质、淀粉酶解蛋白质及淀粉,然后用乙醇沉淀的方法提取水溶性膳食纤维,水溶性膳食纤维得率为16.5%。王异静等通过试验分别得到碱法和酶法提取啤酒糟中水溶性膳食纤维的最佳工艺条件。碱法提取水溶性膳食纤维的最佳工艺条件为:温度70 ℃,NaOH浓度0.9%,提取时间80 min,液固比17∶1。酶法最佳工艺条件为:酶解温度60 ℃,加酶量10%,酶解时间5 h,pH 5.5,液固比15∶1。

2 结论与展望

我国是啤酒生产大国,每年啤酒厂产生大量的副产物——啤酒糟。啤酒糟除少部分被用作饲料销售给当地农民外,大部分以废弃物的形式被排放掉,给环境造成极大的污染。啤酒糟中含有丰富的营养物质,如能将其合理有效的开发利用,将会给企业带来很大的经济效益,且能缓解环境治理压力。

上一篇:非法胎儿性别鉴定范文下一篇:防火安全知识资料范文