塑料模具范文

2023-09-20

塑料模具范文第1篇

一、紫外线杀菌

微生物受紫外光照射后,其蛋白质和核酸吸收了紫外光谱能量,会导致蛋白质变性,引起微生物死亡。

饮料灌装生产设备中,输盖机为压盖机或者拧盖机输送瓶盖。在输盖机储料仓的上部或者输送带的上部安装紫外线杀菌灯管,瓶盖在被输送的过程中接受紫外线照射,紫外线照射到的地方可以达到较好的杀菌效果。由于瓶盖的透光性差,紫外线无法穿透瓶盖照射到瓶盖的另一侧。因此,瓶盖只能达到部分杀菌,且杀菌的表面是随机的。为了有针对性地对瓶盖表面杀菌,在压盖机或拧盖机的瓶盖下滑道上安装紫外线杀菌灯,通过此处的瓶盖已经被整理成方向一致,紫外线照射的一面就是瓶盖与饮料接触的一面,有效提高了杀菌效果。

紫外线杀菌设备简单,无需配套设备,成本低,操作管理方便,使用比较广泛。由于滑道的结构特点及紫外线对微生物的杀灭特性,紫外线杀菌方式一般适合在以下几类饮料灌装的瓶盖中使用:

1.碳酸饮料 碳酸饮料中含有CO2,呈酸性,能抑制微生物的生长,因此碳酸饮料的瓶盖采用紫外杀菌即能满足需求。该方法在生产时,批量包装的新瓶盖倒入输盖机的储料仓,瓶盖在输盖机的储料仓内或输送带上接受紫外线的照射杀菌;还可以在拧盖机下盖滑道上设置紫外线杀菌灯,让瓶盖的内表面接受紫外线的照射杀菌,杀菌后直接输往拧盖机。

2.矿泉水饮料 国家对矿泉水的生产制定了比较严格的规定,其中对矿泉水的菌落总数、霉菌计数和大肠杆菌都严格限制为零。无论是否经过过滤杀菌处理的矿泉水,其总细菌数、霉菌计数和大肠杆菌数都必须符合国家标准。由于矿泉水中只含无机盐,不含微生物营养源,缺少供微生物生产发育的营养成分,因而对其瓶盖也可以采用紫外线杀菌。

3.高温灌装的茶饮料、果汁饮料 茶饮料和果汁饮料中存在着各种微生物(细菌、霉菌和酵母等),饮料的杀菌就是要杀灭这些微生物。目前一般都采用高温短时杀菌法,也称瞬时杀菌法。高温灌装是让经过瞬时杀菌后的饮料冷却在85℃~92℃之间的一个温度区间进行灌装,饮料瓶选用结晶耐热的热灌装瓶,瓶盖选用耐85℃的耐热瓶盖,灌装方式采用满瓶灌装,灌装压盖(或拧盖)后增加倒瓶装置:瓶身倾倒90°~180°,利用饮料自身的高温对瓶盖内部进行杀菌处理。因此瓶盖的前期处理也可以采用紫外线杀菌。

二、热水喷冲杀菌

加热杀菌法是食品保藏的最传统方法之一。微生物细胞若被加热至一定温度,细胞内的生理活性物质(例如酶蛋白质、核蛋白质、脱氧核糖核酸等)会发生变性和钝化,从而失去活性死亡。把微生物杀死的加热温度和时间,按微生物的种类、细胞生理状态、细胞浓度等的不同有明显不同。对于杀灭具体一个菌种,提高杀菌温度可以缩短加热时间,降低温度需要延长加热时间,温度太低,则对某些耐热菌种就起不到杀菌效果。

热水喷冲杀菌就是利用喷嘴对瓶盖多方向喷射热水,在进行杀菌的同时也去除瓶盖内外表面的灰尘。该方法在生产时,理盖后的瓶盖按一致方向在瓶盖通道内行进,在通道的上下方设置多组喷嘴,喷嘴对前进的瓶盖进行多方位热水喷冲,热水的温度就是杀菌温度,接受喷冲的时间就是杀菌时间。

金属盖由于其耐高温,喷冲的热水温度可以超过85℃,喷冲时间可以随着热水温度提高而减少;对于塑料瓶盖,喷冲热水温度一般控制在85℃。热水杀菌后需要对瓶盖喷无菌空气,促使瓶盖的干燥。

热水喷冲杀菌需要提供热水和无菌空气,需要相应的配套设备,生产时会消耗热能和少量水资源,为其配套的是常用的通用设备。热水喷冲杀菌可以用于高温灌装的茶饮料和果汁饮料的瓶盖处理,也可用于矿泉水的瓶盖杀菌。

三、臭氧杀菌 臭氧具有极强的氧化性质,它可以直接破坏病毒的核糖核酸或脱氧核酸并将其杀灭。臭氧也可以损伤细菌、霉菌类微生物的细胞膜,抑制其生长,并进一步渗透破坏膜内组织,直至细菌、霉菌类微生物死亡。臭氧溶解于水,在湿度大的环境里杀菌效果非常好,也可以利用臭氧水对瓶盖进行杀菌。有关臭氧水杀菌将在后面讨论。臭氧的浓度越大杀菌效果越好,在臭氧浓度为4.0mg/m3时,杀菌时间一般需要45分钟到1小时。

由于臭氧杀菌需要的时间很长,对于具备一定生产能力的自动化饮料生产线来说,如果既要满足杀菌效果又要让瓶盖杀菌过程在杀菌设备内连续完成的话,杀菌设备需要做得非常庞大。实际生产过程中,瓶盖臭氧杀菌是在具备一定生产能力的自动化饮料生产线上,在较大的密封空间里放置一定量的瓶盖,然后对瓶盖所在的空间充填一定浓度的臭氧并保持一段时间。放置的瓶盖数量以维持生产所需瓶盖数量而定。杀菌后的瓶盖存放时间越长,受污染的危险越大,所以一般存放时间不超过一周。杀菌后的瓶盖需要与外界隔离,待输盖机需要瓶盖时送往输盖机。

目前,直接采用臭氧杀菌的独立设备多见于小型柜式瓶盖杀菌柜。这种瓶盖杀菌柜的杀菌空间小、生产能力小、间隔生产、非自动化。使用这种臭氧杀菌柜时,需要人工把杀菌的瓶盖搬出杀菌柜放入输盖机,容易造成瓶盖的二次污染。因此,臭氧杀菌只适合非自动化生产线,或对瓶盖有一定杀菌要求的小型生产线。

四、杀菌水杀菌

杀菌水中存在不稳定元素,它们会自行分解。杀菌水杀菌就是利用这个分解过程(氧化过程)对物体表面的微生物进行氧化,从而达到杀菌目的。

常见的具有强氧化性的物质有:过氧乙酸、臭氧水和氯水,臭氧的瞬时杀菌性质优于氯。目前,塑料瓶盖杀菌的杀菌水基本采用过氧乙酸和臭氧水,其中绝大多数为过氧乙酸。杀菌水的浓度越大,需要的杀菌时间也相应缩短。对于65℃2000PPM的过氧乙酸,通过30秒~60秒时间杀菌,可以使瓶盖达到商业无菌的要求。由于杀菌水的杀菌时间短、杀菌效果好,被广泛应用于果蔬汁饮料的瓶和盖杀菌。利用杀菌水对塑料瓶盖进行杀菌的方式主要有喷冲式和浸泡式。

1.喷冲式 是采用多组喷嘴,对瓶盖的多个方向喷射杀菌水进行瓶盖表面杀菌,瓶盖接受喷射的时间应保证微生物能被完全杀灭。具体方法为:经过理盖后的瓶盖方向一致地进入瓶盖轨道,在轨道的上下方设有多组喷头,每组喷头可以从不同角度对瓶盖喷射杀菌水,喷射的杀菌水既对瓶盖进行杀菌也推动瓶盖沿着轨道前行。

利用过氧乙酸作为杀菌水时,杀菌水喷冲后的瓶盖需要接受无菌水的冲洗,以去除瓶盖上残留的过氧乙酸,使之残留量低于相关标准;无菌水冲洗后再用无菌空气吹干瓶盖。

利用臭氧水作为杀菌水时,由于臭氧水分解后的产物是水和氧气,不存在任何有害的残留物质,理论上无需对瓶盖再作处理,但实际生产过程中,由于瓶盖杀菌机出口与旋盖机距离很近,无法使残留臭氧完全分解,因此,瓶盖经过臭氧水杀菌后还需要经过无菌水冲洗和无菌空气吹干处理。

由于喷射水的直线性,无菌水喷冲杀菌可以用于矿泉水瓶盖杀菌,也可以用于茶饮料和果汁饮料热灌装时的瓶盖杀菌。热灌装采用满瓶灌装,灌装旋盖后倒瓶加热瓶盖,进行内部杀菌处理。

2.浸泡式 是把塑料瓶盖完全浸泡在杀菌水中,使瓶盖的所有内外表面都接受杀菌水杀菌,浸泡时间应满足瓶盖完全杀菌的时间要求。一种方法是:方向一致的瓶盖固定在瓶盖架上,瓶盖架连接在链条上,链条的运动带动瓶盖架进入装有杀菌水的杀菌池内并使瓶盖完全浸泡在杀菌水中,浸泡的时间应满足完全杀菌的时间要求。与喷冲杀菌方式一样,杀菌水浸泡后的瓶盖同样需要无菌水的喷洗和无菌空气的喷冲,使瓶盖既干燥又无菌。

采用无菌水杀菌方式时,为其配套的杀菌水、无菌水和无菌空气需要制作和处理,外围的配套设备比较多,配套成本高,消耗成本大,管理要求高,因此这种杀菌工艺一般应用于果汁饮料的无菌冷灌装。

五、电解液杀菌

塑料模具范文第2篇

1)塑料的力学性能,如强度、刚性、韧性、弹性、 弯曲性能。

2)塑料的物理性能,如对使用环境温度变化的 适应性、光学性能、绝热或电气绝缘的程度、精 加工和外观的完满程度等。

3)塑料的化学性能,如对接触物(水、溶剂、油、药品)的耐性、卫生程度以及使用上的安全性等。

4)必要的精度,如收缩率的大小及各向收缩率的差异。 5)成型工艺性,如塑料的流动性、结晶性、 热敏性等。

选择具体的脱模斜度时,注意以下原则:

1)制品尺寸公差允许,脱模斜度取大值。 2)热塑性塑料的脱模斜度大,热固性小。 3)壁厚大,收缩量大,脱模斜度大。 4)较高、较大的制品,脱模斜度小。 5)高精度制品,脱模斜度小。 6)制品高度很小,脱模斜度为零。

7)脱模后制品留在型芯一边,型芯斜度小。

8)内孔以小端为基准,斜度由扩大方向取得;外形以大端为基准,斜度由缩小方向取得。

制品壁厚

1) 制品必须有足够的强度和刚度; 2) 塑料在成型时有良好的流动状态; 3) 脱模;

4) 壁厚均匀,否则使制品变形或产生缩孔、凹陷及填充不足等缺陷。

5) 热固性塑料的小型塑件,壁厚取1.6~2.5mm,大型塑件取3.2~8mm。 6) 热塑性塑料的小型制件,壁厚取1.75~2.30mm,大型制件2.4~6.5mm。

加强肋增加塑件的强度和避免塑件翘曲变形。

加强肋的设计原则:

加强肋<壁厚,b <(0.5 ~ 0.7)δ; 足够的斜度,α= 4°~ 10°; 圆角,R =δ/8;

高度小,数量多,L< 3δ。

圆角

尖角:应力集中,塑件破裂,模具热处理时淬裂。 圆角半径:壁厚的1/3以上。 圆角有利于塑料充型流动。

圆角会导致凹模型腔加工复杂,使钳工劳动量增加。

饰纹、文字、符号及标记 设计要求: a. 脱模

b. 模具易于加工,文字可用刻字机刻制图案可用手工雕或电加工等,

c. 标记的凸出高度≥0.2mm,线条宽度≥ 0.3mm ,两条线的间距≥0.4mm,标记的脱模斜度≥ 10°。

塑料螺纹设计

1. 成型的螺纹精度低于3级。 2. 金属螺纹嵌件。

3. 塑料螺纹螺牙尺寸应较大。

4. 塑料螺纹的外径≥4mm,内径≥2mm。

5. 螺孔始端有0.2 ~ 0.8mm的台阶孔,螺纹末端≥0.2mm的距离。

金属嵌件的设计原则 1)圆形或对称形状;

2)壁厚(金属嵌件周围的塑料层厚度大); 3)倒角; 4)定位;

5)自由伸出长度≤2d;

6)嵌件会降低生产效率,且生产不易自动化。

影响尺寸精度的因素 1. 和模具有关的原因: 1)模具的形式或基本结构 2)模具的加工制造误差

3)模具的磨损、变形、热膨胀 2. 和塑料有关的原因

1)不同厂家生产的塑料的标准收缩率的变化

2)不同批量塑料的成型收缩率、流动性、结晶化程度的差异 3)再生塑料的混合、着色剂等添加物的影响 4)塑料中的水分以及挥发和分解气体的影响

3. 和成型工艺有关的原因

1)由于成型条件变化造成的成型收缩率的波动 2)成型操作变化的影响

3)脱模顶出时的塑料变形、弹性恢复 4. 和成型后时效有关的原因

1)周围温度、湿度不同造成的尺寸变化

2)塑料的塑性变形及因为外力作用产生的蠕变、弹性恢复 3)残余应力、残余变形引起的变化

从模具设计和制造的角度,影响塑料制品尺寸精度的因素有五个方面: 1)模具成型零件的制造误差δz; 2)模具成型零件的表面磨损δc; 3)塑料收缩率波动δs;

4)模具活动成型零件的配合间隙变化δj; 5)模具成型零件的安装误差δa。

对于小尺寸的制品,模具制造误差对制品尺寸的影响要大些;

对于大尺寸的制品,收缩率波动引起的误差是影响制品尺寸精度的主要因素。

表面粗糙度的确定

1. 模具的表面粗糙度比塑料制品的表面粗糙度低一级; 2. 对透明的塑料制品要求型腔和型芯的表面粗糙度相同;

3. 对于不透明的塑料制品,型芯的表面粗糙度的级别可比型腔的表面粗糙高1 ~2级。

注射成型特点

型周期短成型形状复杂尺寸精确带有金属或非金属嵌件的塑料制件热塑性塑料(除氟塑料外)一些热固性塑料生产效率高易于实现全自动化生产应用广泛

按照注射机的注射方向和模具的开合方向分类

1)卧式注射机重心低、稳定加料、操作及维修均很方便塑件推出后可自行脱落便于实现自动化生产模具安装较麻烦嵌件放入模具有倾斜和脱落的可能机床占地面积较大

2)立式注射机占地面积小安装和拆卸模具方便安放嵌件容易重心高、不稳定加料较困难推出的塑件要人工取出不易实现自动化生产最大注射量在60g以下

3)角式注射机结构简单机械传动不能准确可靠地控制注射、保压压力及锁模力。模具受冲击和振动较大

按注射装置分类

注塞式以加热料筒、分流梭和柱塞来实现成型物料的塑化和注射。 构造简单适合于小型零件的成型材料滞流严重压力损失大

螺杆预塑化型塑化:螺杆旋转、料筒进行塑化。注射:螺杆移动进行注射。 特点:塑化均匀,计量准确。

注射机的组成 注射机构 加料器 料筒

螺杆(或柱塞与分流梭) 喷嘴 锁模机构

作用:锁紧模具 模具的开合动作顶出模内制品

锁模方式全液压式(直压式)液压-机械联合作用式(肘拐式)。 顶出方式机械式液压式

液压传动和电器控制系统液压传动系统是注射机的动力系统电器控制系统则是各动力液压缸完成开启、闭合和注射等动作的控制系统。

热塑性塑料的工艺性能 1.收缩 塑料制品从模具中取出发生尺寸收缩的特性。 2流动性塑料成型难易的指标

影响塑料流动性的因素:a.聚合物的性质b.成型条件

衡量流动性的指标: a.相对分子质量 b.熔融指数

c.阿基米德螺旋线长度 d.表观粘度

e.流程比( 流程长度/制品壁厚)

成型工艺条件对流动性的影响: 1)熔体成型温度 2)注射压力 3)模具结构

3.塑料的结晶结晶形塑料各向异性显著、内应力大。脱模后制品内未结晶的分子继续结晶,使制品变形、翘曲。

注射成型工艺过程

成型前准备塑料外观(如色泽、颗粒大小及均匀度等)检验; 塑料的干燥处理 料筒的清洗或拆换 嵌件的预热

脱模剂:硬脂酸锌、液体石蜡和硅油 注射成型过程加料塑化注射冷却脱模 固体颗粒转换成粘流态的过程称为塑化。 影响因素: 受热情况 剪切作用 螺杆的剪切

摩擦热促进塑化

注射:充模熔体经过喷嘴及模具浇注系统进入并填满型腔。型腔内熔体压力迅速上升,达到最大值,熔体压实。

保压熔体冷却收缩,熔料不断补充进入模具。模具冷却,熔体密度增大,逐渐成型。 倒流

保压结束,螺杆回程(预塑开始)。

型腔中的熔料通过浇口流向浇注系统称为倒流现象。 熔体在浇口处凝固,倒流停止。

浇口冻结后的冷却

加入新料,同时通入冷却水、油或空气等冷却介质,对模具进行进一步的冷却。

脱模

在推出机构的作用下将塑料制件推出模外。

制件的后处理退火或调湿,改善和提高制品的性能和尺寸稳定性。

退火处理

目的:消除制品的内应力,稳定结晶结构。 方法:制品在定温的烘箱中静置一段时间。 退火温度=制品使用温度+(10~20)℃ 退火温度=塑料热变形温度-(10~20)℃ 退火时间根据制品厚度确定。 退火后应使制品缓冷至室温。

调湿处理 目的:防止氧化变色或吸收水分而膨胀,使制品尺寸稳定。 方法:将刚脱模的制品放在热水中处理。

注射成型工艺参数 温度

料筒温度料筒温度选择的依据:流动性,热降解。 Tf (Tm) <料筒温度

喷嘴温度喷嘴温度<料筒的最高温度 防止直通式喷嘴发生“流涎”现象

模具温度充型能力 塑件的性能和外观质量 模温升高: 流动性增加 充模压力下降 生产率降低

制品内应力降低 制品表面质量提高 成型收缩率增大

制品密度或结晶度增大 制品翘曲度增大

2.压力

塑化压力背压:注射机螺杆顶部的熔体在螺杆转动后退时所受到的压力。 背压是通过调节注射液压缸的回油阻力来控制的。 背压增加:增加熔体的内压力 加强剪切效果、提高熔体的温度

螺杆退回速度减慢,延长塑料受热时间,改善塑化质量。

注射压力注射时在螺杆头部产生的熔体压强。 注射压力过低,不能充满型腔。

注射压力过大,溢料,变形,系统过载。 注射压力增大: 塑料流动性增加 充填速度增加 接缝强度增加 制件重量增加

制件中内应力增加

注射压力与熔体温度的关系 料温高,注射压力低; 料温低,注射压力高。 料温和注射压力组合

模腔压力

注射压力经过喷嘴、流道和浇口的压力损失后在模具型腔内产生的熔体压强。

3.注射成型周期和注射速度 完成一次注射成型所需的时间 注射速度增大: 熔体流速增加 剪切作用加强 粘度降低

熔体温度升高

熔体流动长度增加 熔合纹强度增加 内应力升高 表面质量下降 湍流、喷射

塑料模具范文第3篇

然而, 一提起设计类课程, 很多老师、学生都有力不从心的感觉:老师虽绞尽脑汁, 学生仍感“枯燥无味”;学生虽刻苦认真, 基础扎实, 但课程结束之后仍连一个简单的机械零部件也独自设计不出, 更别提采用AUTOCAD、Solidworks或Pro/E等相关绘图软件来设计一个简单的机器了。

要造就大量的创新型人才, 教师的教学方法是关键。目前之所以出现机械设计类专业的学生不敢设计、不会设计, 甚至不乐于设计的现状, 主要是教师在教学过程中没有提供给他们施展创新设计意识的平台和环境, 不能引入和激发学生的创新性思维和创造理念。导致学生所谓的“设计”不过是在现有模型的基础上修改个别地方而已, 仅起到纯粹熟悉绘图软件的作用。

本人通过对几届学生讲授《塑料模具设计》课程后, 感觉启示颇多, 很多学生对本人的教学模式反馈较好。下面本文将详细对《塑料模具设计》课程的一些教学方法和教学体会进行分析和探讨。

1 引进“第三方思维”设计理念

这里提出的所谓的“第三方思维”源于目前经济学中的一个流行概念, 引入教学中, 主要是指, 它不同于我们常规的教学思路和学生延续这种传统的设计理念这二者之外的第三方, 它是一个柔性概念, 具有“不按常规出牌”的特点, 引导学生在对相关知识了解和熟知的基础上, 充分对教材中的某些理论知识点或某个机械机构进行创新思维设计, 提出一些合理的“莫名其妙”的新想法, 然后独自或分组展开讨论, 制定出相应的解决方案, 最后对其进行有规律的、合乎逻辑的创新性或创造性设计。这一设计新理念打破了传统的“填鸭式”教学模式和方法, 它在这一总体设计过程中, 要求授课老师首先要有创新意识, 能够提综合设计多媒体技术

识码:A文章编号:1673-9795

出供学生思考和充分发挥想象的问题。比如在设计注塑模的推出机构时, 很多同学在老师的引导下提出一些“奇特”的好想法, 虽然这些想法可能能够实现, 也可能是“空想”或“幻想”, 但毕竟激发起了学生对该课程的学习兴趣和实际操作能力, 而且通过最终的集体分组讨论, 也明白了自己提出的设计方案为何有“问题”, 为以后从事相关设计研究打下坚实的实践基础。这种新思想的实施在学生的“毕业设计”环节中有了很好的展现, 有的学生提出的机器人智能模块化设计思想、新型高效开槽机中上百把车刀同时工作的机构等都受到评委老师的高度赞扬, 有的学生为此还获得奖励。

当然要求授课老师有很好的创新意识, 可能对一些老师会产生压力, 其实这一点也不要怕, 不要低估了学生的创造力。众所周知, 对于同一个看似简单的问题, 小孩可能给你一些让你难以想象的、感觉很不可思议、但是又有一点独特意义的答案;而大人, 尤其是掌握知识越多的人, 有时反而由于对该简单问题想的比较多, 比较复杂, 无形中增加了很多条条框框的限制, 最终导致很难产生, 甚至不能产生创造性的思维。而且我在教学的过程中也受到了学生的很多启发, 产生了很多新的设计思想。

2 实施责任分组、综合设计

要实现创新设计理念, 尤其对于古老的机械设计而言, 单靠一两个学生是很难完成的, 这就需要团队思想。这对目前的高科技技术研究也是如此。针对《塑料模具设计》课程, 在教学过程中本人就提出采用责任分组、综合设计的教学方法。具体就是老师在讲授这门课的过程中有意识地把塑料模具设计课程中的某些重点的教学内容分成几大模块, 而且始终以一个固定的注塑模例子, 如手机后盖为例对其详细讲解。从浇注系统、成型零件设计、导向机构设计、推出机构设计、侧向分型机构设计最后到温度调节系统设计中的每一个环节, 学生根据老师讲授的设计理念和设计原则, 以5~6个学生为一组实行分组分环节设计, 待每一环节设计完成后统一进行三维实物效果或二维CAD图展示, 由每组设计人员选出代表对自己组设计的相应的机构进行简单说明, 然后老师再对每组设计的机构进行评价和解析, 找出和总结出有“创新设计”思想的例子, 并对这些学生进行表扬和平时成绩加分, 以鼓励他们设计的积极性。通过大约6次这样的有针对性的分组讨论和综合设计及其激烈讨论, 学生的学习兴趣有了很大的提高, 而且创新意识也有了很大的改善。此外, 这种以固定示例为中心的教学模式, 有利于学生对注塑模的设计过程有一个清晰、整体的认识和掌握。

3 重用多媒体技术, 优化课堂教学

设计类课程是一门综合性、实践性很强, 而且需要一定空间想象力的课程, 《塑料模具设计》也不例外。传统教学中教师大多采用板书、零星挂图、实物模型等进行讲授, 教师讲起来很费劲, 甚至有些问题也很难讲清楚, 比如热固性塑料流动性大小的判定等, 这是因为不论是挂图, 还是实物模型都是静态的, 没有动态效果。因此, 学生听起来很吃力, 教学效果并不理想。

与传统的教学手段相比, 现代多媒体教学使《塑料模具设计》课程的教学生动活泼起来, 可以具体明了地描述和展示一些教材中难以表达的概念、理论以及复杂结构, 使学生的学习变得轻松、愉快。比如对整个注射机工作原理的说明, 如果直接对着教材讲, 会显得很乏味, 学生没有“身临其境”的感觉, 有些学生甚至可能不能完全理解;而如果采用注射机工作过程的flash动画、视频文件就可以很清晰地说明整个注射机的工作过程, 而且其中注射模的每个组成部件也都能看的很清楚, 这使学生更容易获得知识, 理解其中的原理。

另外, 多媒体教学对于节省课堂绘图时间, 增大课堂信息容量, 提高视觉效果以及拓宽学生知识面和创新思维等都优越于传统的教学模式——板书式, 这尤其在机械设计类课程中体现的最明显。

摘要:以《塑料模具设计》课程为例, 首次提出了针对机械设计类课程所需要的“第三方思维”设计新理念。同时为了有效提高这类课程的教学效果, 指出责任分组、综合设计和现代多媒体技术手段相结合是十分有效的教学途径。

关键词:“第三方思维”设计,责任分组与综合设计,多媒体技术

参考文献

[1] 周永泰.我国塑料模具现状与发展趋势[J].塑料, 2000, 29 (6) :23~27.

[2] 王文平, 池成忠.塑料成型工艺与模具设计[M].北京:北京大学出版社, 2005.

塑料模具范文第4篇

1 传统教学中存在的问题

1.1 教学内容落后

塑料模具设计本身是一项不断发展、不断出新的技术。当前塑料模具发展十分迅速, 而教材的内容基本比目前模具发展落后3~5年, 即使同学们掌握了书本内容, 但应用到具体实践中还是感觉陌生。随着塑料制品应用范围的扩大, 为了降低生产成本, 提高塑料产品的质量, 许多厂家都在不断探索新的成型工艺和先进的模具设计方法。但目前绝大部分塑料制品与模具设计教材都是以基本理论和经验数据为基础进行编写的, 无法跟上技术更新的脚步。

1.2 教学手段单一

塑料成型模具设计是一门综合性和空间概念很强的课程, 对于空间结构动作原理较复杂的模具, 要求学生通过空间想象能力将二维模具图看成立体的可以活动的模具图, 这往往令初学者望而生畏。

传统的教学方法是“一张嘴一支粉笔一块黑板”的模式, 这种单一的教学手段有很大的局限性。既不能直观、具体的表达模具的结构, 又不利于学生理解模具各零部件之间的动态关系。比如侧抽芯滑块机构的运动过程、分型面的选择对模具结构的影响, 冷却水道的设计对模具温度的影响、模具运行全过程等。

2 新教学方法探索

2.1 围绕专业培养目标, 优化教学内容

传统的塑料制品与模具设计教学内容较多, 每部分所用学时也较少, 重点不突出, 造成学生学不精、学不透, 实用性不强, 学习效果较差。近年来, 塑料注射模具的应用日趋广泛, 注射模具的应用已占据主导地位, 因此, 对塑料成型模具理论教学内容进行优化处理。围绕塑料注射模具设计的进行编排教学内容, 主要讲授注射成型模具设计注射模结构及与注射机的关系, 以及Pre、UG在注射模设计中的应用;对其他塑料成型模具、新型模具的发展方向仅作简单介绍。将大部分学时用在注射模具设计这一章中, 同时将这章不重要的内容也作适当的压缩, 如热流道模具和热固性塑料注射模这样可使这门课在理论教学内容上得到整体优化, 突出教学重点与教学内容的实用性。

2.2 计算机辅助教学

利用CAD、CAE、CAM等软件使学生了解模具结构, 掌握模具成型工艺过程和模具零件加工方法。使用多媒体教学课件, 穿插flash动画和视频在课堂上演示是一种比较好的教学手段。通过这些方法, 可以让学生清楚地了解到模具的工作过程以及在注射过程中各个部件的相互运动过程。既节省了板书时间, 提高了教学效率, 又激发了学生的学习兴趣, 活跃了课堂气氛, 使学生可以轻松地掌握把晦涩难懂的模具结构知识。

2.3 现场实践教学

塑料制品与模具设计是一门实践性很强的课程, 实践教学体系是培养具有实践能力和创新精神的高素质人才的重要教学环节之一。

在课堂教学过程中, 安排一定的磨具拆装和模具零件加工等实践教学, 让学生在实践中自己动手测绘模具, 不懂的地方可随时请教指导老师, 加强了对模具结构的了解。课堂教学中不容易消化掉的知识, 通过实际动手很快就能掌握, 改善了教学效果。

2.4 可设模具课程设计

课程设计是高分子成型模具课程配套的实践教学环节。学生通过该课程所学的基本上是模具各个系统的设计, 那么能不能将所学的散碎的模具系统组装在一起, 就要通过课程设计来完成了。时间两周左右, 要求学生完成给定中等复杂塑料件的模具设计, 即:设计塑料模, 绘制模具总装图及部分非标准零件的零件图。通过课程设计, 巩固学生所学理论知识, 使学生具备中等复杂塑料件的塑料模设计设计能力, 为将来从事模具设计工作奠定基础。

3 结语

本课程通过几年的教学实践取得了良好的教学效果。实践证明, 通过课程教学改革与实践, 极大地调动了学生的学习兴趣, 在培养学生的学习能力、设计能力、实践能力和创造能力等方面都取得了良好的效果。

《中外医疗》杂志欢迎投稿

社址北京市丰台区菜户营58号财富西环名苑2609室邮编100054电话010-63385386传真010-63385686 E-mail zwylbjb@263.net

摘要:塑料制品与模具设计是高等工科院校高分子材料与工程专业本科生的专业课程之一。文中对该课程的教学方法和手段进行了探讨, 为适应教学要求和提高教学效果, 采用多媒体教学方式, 结合图片和动画演示, 对培养和提高学生的实践能力, 提高人才培养质量作出有益探索。

塑料模具范文第5篇

人掏钱是恋人关系,女人掏钱是夫妻关系,男女抢着掏钱是朋友关系。男人爱用眼睛看女人,

最易受美貌迷惑;女人爱用心看男人,最易受伤心折磨。塑料收缩率和模具尺寸

设计塑料模时,确定了模具结构之後即可对模具的各部分进行详细设计,即确定各模板和零

件的尺寸,型腔和型芯尺寸等。这时将涉及有关材料收缩率等主要的设计参数。因而只有具

体地掌握成形塑料的收缩率才能确定型腔各部分的尺寸。即使所选模具结构正确,但所用参

数不当,就不可能生产出品质合格的塑件。

一 、塑料收缩率及其影响因素

热塑性塑料的特性是在加热後膨胀,冷却後收缩,当然加压以後体积也将缩小。 在注

塑成形过程中,首先将熔融塑料注射入模具型腔内,充填结束後熔料冷却固化,从模具中取

出塑件时即出现收缩,此收缩称为成形收缩。塑件从模具取出到稳定这一段时间内,尺寸仍

会出现微小的变化,一种变化是继续收缩,此收缩称为後收缩。另一种变化是某些吸湿性塑

料因吸湿而出现膨胀。例如尼龙610含水量为3%时,尺寸增加量为2%;玻璃纤维增强尼龙

66的含水量为40%时尺寸增加量为0.3%。但其中起主要作用的是成形收缩。 目前确定各种

塑料收缩率(成形收缩+後收缩)的方法,一般都推荐德国国家标准中DIN16901的规定。即

以23℃±0.1℃时模具型腔尺寸与成形後放置24小时,在温度为23℃,相对湿度为50±5%

条件下测量出的相应塑件尺寸之差算出。

收缩率S由下式表示: S={(D-M)/D}×100%(1)

其中:S-收缩率; D-模具尺寸; M-塑件尺寸。

如果按已知塑件尺寸和材料收缩率计算模具型腔则为 D=M/(1-S) 在模具设计中为了简化计

算,一般使用下式求模具尺寸:D=M+MS(2)

如果需实施较为精确的计算,则应用下式: D=M+MS+MS2(3)

但在确定收缩率时,由於实际的收缩率要受众多因素的影响也只能使用近似值,因而用式(2)

计算型腔尺寸也基本上满足要求。在制造模具时,型腔则按照下偏差加工,型芯则按上偏差

加工,便於必要时可作适当的修整。

难於精确确定收缩率的主要原因,首先是因各种塑料的收缩率不是一个定值,而是一个范围。

因为不同工厂生产的同种材料的收缩率不相同,即使是一个工厂生产的不同批号同种材料的

收缩率也不一样。因而各厂只能为用户提供该厂所生产塑料的收缩率范围。其次,在成形过

程中的实际收缩率还受到塑件形状,模具结构和成形条件等因素的影响。下面对这些因素的

影响作一介绍:

1、塑件形状

对於成形件壁厚来说,一般由於厚壁的冷却时间较长,因而收缩率也较大,如图1所示。

对一般塑件来说,当熔料流动方向L尺寸与垂直於熔料流方向W尺寸的差异较大时,则收缩率差异也较大。 从熔料流动距离来看,远离浇口部分的压力损失大,因而该处的收缩率也比靠近浇口部位大。 因加强筋、孔、凸台和雕刻等形状具有收缩抗力,因而这些部位的收缩率较小。

2、模具结构

浇口形式对收缩率也有影响。用小浇口时,因保压结束之前浇口即固化而使塑件的收缩率增大。 注塑模中的冷却回路结构也是模具设计中的一个关键。冷却回路设计得不适当,则因塑件各处温度不均衡而产生收缩差,其结果是使塑件尺寸超差或变形。在薄壁部分,模具温度分布对收缩率的影响则更为明显。

3、成形条件

料筒温度:料筒温度(塑料温度)较高时,压力传递较好而使收缩力减小。但用小浇口时,因浇口固化早而使收缩率仍较大。对於厚壁塑件来说,即使料筒温度较高,其收缩仍较大。

补料:在成形条件中,尽量减少补料以使塑件尺寸保持稳定。但补料不足则无法保持压力,也会使收缩率增大。

注射压力:注射压力是对收缩率影响较大的因素,特别是充填结束後的保压页号335压力。在一般情况下,压力较大的时因材料的密度大,收缩率就较小。

注射速度:注射速度对收缩率的影响较小。但对於薄壁塑件或浇口非常小,以及使用强化材料时,注射速度加快则收缩率小。

模具温度:通常模具温度较高时收缩率也较大。但对於薄壁塑件,模具温度高则熔料的流动阻抗小,*]而收缩率反而较小。

成形周期:成形周期与收缩率无直接关系。但需注意,当加快成形周期时,模具温度、熔料温度等必然也发生变化,从而也影响收缩率的变化。在作材料试验时,应按照由所需产量决定的成形周期进行成形,并对塑件尺寸进行检验。用此模具进行塑料收缩率试验的实例如下。 注射机:锁模力70t 螺杆直径Φ35mm 螺杆转速80rpm 成形条件:最高注射压力178MPa 料筒温度230(225-230-220-210)℃ 240(235-240-230-220)℃ 250(245-250-240-230)℃ 260(225-260-250-240)℃ 注射速度57cm3/s 注射时间0.44~0.52s 保压时间6.0s 冷却时间15.0s

二 、模具尺寸和制造公差

模具型腔和型芯的加工尺寸除了通过D=M(1+S)公式计算基本尺寸之外,还有一个加工公差的问题。按照惯例,模具的加工公差为塑件公差的1/3。但由於塑料收缩率范围和稳定性各有差异,首先必须合理化确定不同塑料所成形塑件的尺寸公差。即由收缩率范围较大或收缩率稳定较差塑料成形塑件的尺寸公差应取得大一些。否则就可能出现大量尺寸超差的废品。 为此,各国对塑料件的尺寸公差专门制订了国家标准或行业标准。中国也曾制订了部级专业

标准。但大都无相应的模具型腔的尺寸公差。德国国家标准中专门制订了塑件尺寸公差的DIN16901标准及相应的模具型腔尺寸公差的DIN16749标准。此标准在世界上具有较大的影响,因而可供塑料模具行业参考。

关於塑件的尺寸公差和允许偏差

为了合理地确定不同收缩特性材料所成形塑件的尺寸公差,让标准引入了成形收缩差△VS这一概念。

△VS=VSR_VST(4)

式中: VS-成形收缩差VSR-熔料流动方向的成形收缩率VST-与熔料流动垂直方向的成形收缩率。

根据塑料△VS值,将各种塑料的收缩特性分为4个组。△VS值最小的组是高精度组,以此类推,△VS值最大的组为低精度组。 并按照基本尺寸编制了精密技术、

110、120、130、140、150和160公差组。并规定,用收缩特性最稳定的塑料成形塑件的尺寸公差可选用

110、120和130组。用收缩特性中等稳定的塑料成形塑件的尺寸公差选用120、130和140。如果用这类塑料成形塑件的尺寸公差选用110组时,即可能出大量尺寸超差塑件。用收缩特性较差的塑料成形塑件的尺寸公差选用130、140和150组。用收缩特性最差的塑料成形塑件的尺寸公差选用140、150和160组。 在使用此公差表时,还需注意以下各点。 表中的一般公差用於不注明公差的尺寸公差。直接标注偏差的公差是用於对塑件尺寸标注公差的公差带。其上、下偏差可设计人员自行确定。例如公差带为0.8mm,则可以选用以下各种上、下偏差构成。0.0;-0.8;±0.4;-0.2;-0.5等。 每一公差组中均有A、B两组公差值。其中A是由模具零件组合形成的尺寸,增加了模具零件对合处不密合所形成的错差。此增加值为0.2mm。其中B是直接由模具零件所决定的尺寸。 精密技术是专门设立的一组公差值,供具有高精度要求塑件使用。 在此用塑件公差之前,首先必须知道所使用的塑料适用哪几个公差组。

三 、模具的制造公差

德国国家标准针对塑件公差制订了相应模具制造公差的标准DIN16749。该表中共设4种公差。不论何种材料的塑件,其中不注明尺寸公差尺寸的模具制造公差均使用序号1的公差。具体公差值由基本尺寸范围确定。 不论何种材料塑件中等精度尺寸的模具制造公差为序号2的公差。不论何种材料塑件较高精度尺寸的模具制造公差为序号3的公差。精密技术相应的模具制造公差为序号4的公差。

塑料模具范文第6篇

1、塑料注射(塑)模具

它主要是热塑性塑料件产品生产中应用最为普遍的一种成型模具,塑料注射成型模具对应的加工设备是塑料注射模具对应的加工设备是塑料注射成型机,塑料首先在注射机底加热料筒内受热熔融,然后在注射机的螺杆或柱塞推动下,经注射机喷嘴和模具的浇注系统进入 模具型腔,塑料冷却硬化成型,脱模得到制品。其结构通常由成型部件、浇注系统、导向部件、推出机构、调温系统、排气系统、支撑部件等部分组成。制造材料通常采用塑料模具钢模块,常用的材质主要为碳素结构钢、碳素工具钢、合金工具钢,高速钢等。注射成型加工方式通常只适用于热塑料品的制品生产,用注射成型工艺生产的塑料制品十分广泛,从生活日用品到各类复杂的机械,电器、交通工具零件等都是用注射模具成型的,它是塑料制品生产中应用最广的一种加工方法。

2、 塑料压塑模具

包括压缩成型和压注成型两种结构模具类型。它们是主要用来成型热固性塑料的一类模具,其所对应的设备是压力成型机。压缩成型方法根据塑料特性,将模具加热至成型温度(一般在103°—108°),然后将计量好的压塑粉放入模具型腔和加料室,闭合模具,塑料在高热,高压作用下呈软化粘流,经一定时间后固化定型,成为所需制品形状。压注成型与压缩成型不同的是没有单独的加料室,成型前模具先闭合,塑料在加料室内完成预热呈粘流态,在压力作用下调整挤入模具型腔,硬化成型。压缩模具也用来成型某些特殊的热塑性塑料如难以熔融的热塑性塑料(如聚加氟乙烯)毛坯(冷压成型),光学性能很高的树脂镜片,轻微发泡的硝酸纤维素汽车方向盘等。压塑模具主要由型腔、加料腔、导向机构、推出部件、加热系统等组成。压注模具广泛用于封装电器元件方面。压塑模具制造所用材质与注射模具基本相同。

3、塑料挤出模具

用来成型生产连续形状的塑料产品的一类模具,又叫挤出成型机头,广泛用于管材、棒材、单丝、板材、薄膜、电线电缆包覆层、异型材等的加工。与其对应的生产设备是塑料挤出机,其原理是固态塑料在加热和挤出机的螺杆旋转加压条件下熔融,塑化,通过特定形状的口模而制成截面与口模形状相同的连续塑料制品。其制造材料主要有碳素结构钢、合金工具等,有些挤出模具在需要耐磨的部件上还会镶嵌金刚石等耐磨材料。挤出中工工艺通常只适用热塑性塑料品制品的生产,其在结构上与注塑模具和压塑模具有明显区别。

3、塑料吹塑模具

是用来成型塑料容器类中空制品(如饮料瓶、日化用品等各种包装容器)的一种模具,吹塑成型的形式按工艺原理主要有挤出吹塑中空成型、注塑成型的形式按工艺原理主要有挤出吹塑中空成型、注射吹塑中空成型、注射延伸吹塑中空成型(俗称“注拉吹”),多层吹塑中空成型,片材吹塑中空成型等。中空制品吹塑成型所对应的设备通常称为塑料吹塑成型机,吹塑成型只适用于热塑料品种制品的生产。吹塑模具结构较为简单,所用材料多以碳素多则制造。

4、塑料吸塑模具

是以塑料板、片材为原料成型某些较简单塑料制品的一种模具,其原理是利用抽真空盛开方法或压缩空气成型方法使固定在凹模或凸模上的塑料板、片,在加热软化的情况下变形而贴在模具的型腔上得到所需成型产品,主要用于一些日用品、食品、玩具类包装制品生产方面。吸塑模具因成型时压力较低,所以模具材料多选用铸铝或非金属材料制造,结构较为简单。

5、高发泡聚苯乙烯成型模具

上一篇:科技传播范文下一篇:商标法实施细则范文